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PREFACE

The David W. Taylor Lectures were initiated as a living memorial to
our founder, in recognition of his many contributions to naval architecture
and naval hydrodynamics. Admiral Taylor was a pioneer in the use of hydro-
dynamic theory and mathematics for the solution of naval problems. The
system of mathematical lines developed by Taylor was used to develop many
ship designs for the Navy long before the computer was invented. He
founded and directed the Experimental Model Basin; perhaps most important
of all, he established a tradition of applied scientific research at the
"Model Basin" which has been carefully nurtured through the decades and
which we treasure and protect today. In the spirit of this tradition, we
invite an eminent scientist in a field closely related to the Center’s work
to spend a few weeks with us, to consult with and advise our working staff,
and to give a series of lectures on subjects of current interest.

Our third lecturer in this series is Professor John V. Wehausen of
the University of California, Berkeley. Professor Wehausen graducted from
the University of Michigan and received his Ph.D; in mathematics from there
in 1938. He 1is no stranger to the Center or its problems. From 1946 to
1949 he worked here as a mathematician and developed his interest in naval
hydrodynamics. He later became the resident mathematician in the Depart-
ment of Naval Architecture at the University of California, where he
further developed his knowledge of the theory of water waves and the hydro-
dynamics of ships. Professor Wehausen has trained many outstanding re-
searchers in the field of naval hydrodynamics through his teaching at the

University, and we are most honored that he agreed to be a David W. Taylor
lecturer.

ron i T e w3,

SIS PSRN EE




P — NS SRR A s S de et e
v - Ll Laneuiie it R L 4 et = T

=

- o g B - Y S S
> - N it ettt

: - [y by

ﬁ N‘ » .

I b4

mn

j'
o
vi

2 .
AN P NI

w*:

. . - - = - -
A ) Lol
o - - . P P “ kot DRTETER Lira e e e i -




cauls a8 b . r 2k el Lasan ! 4y T gl | hatt 1 Ll et Tt St SR S e s it (T ot B £ I 1 e S s ) 1 iR el Gt ol ul - ol £

vii

e it P T I I B R P T TR it e e




R PRLINY R

w y——
B

A m;.mwmtrqm;wmm

Pl 2

ey s en

e

A L -

%

AT T

v ?mwﬂ(rﬂ' o

P riewy 47 3

- v T T TR T TS T T YR o Y TR T WY ———
T TR R IRNEL Y . o A v

ABSTRACT

In these lectures several mcthods are presented that
are useful for solving free-surface boundary-value problems:
separation of variables and the Fourier method, the method
of reduction and reflection, the method of Green functions,
and the method of multipoles. Esch method is illustrated
by one or more examples. In the examples the fluid is asssumad
to be inviscid and ircompesssible and the flow irrotational.
The boundary conditions have been linearized. The examples
themselves are all concerned with diffraction and forced
motion. Although the methods are applicable to a much wider
class of problems, this restriction allows a simple formula-

tion of the physical problem and immediate involvement with
the method itself.

INTRODUCTION

The analysis of an engineering problem in fluid mechanics usually
proceeds along the following lines. First one selects a model of a fluid:
Navier-Stokes or inviscid, compressible or not, with or without surface
tension, etc. The decision can usually be based upon an examination of
various physical parameters characterizing the problem. Next a de-
cision must be made with regard to the flow: 1is it steady or unsteady,
is it irrotational, etc.? Again, this will be based upon physical
parameters (or perhaps a desperate need to avoid complications). The next
step is an exact formulacion of the equations of motion and of the bound-
ary and initial conditions for the fluids and bodies present. (Ideal-
ly this should be accowpanied by existence and uniqueness studies.)
The problem will usually be too difficult mathematically, so the next
gtep 1s tc replace these equations by other simpler ones. The region o
usefulness of these simpler equations will also depend on certain
paraceters associated with the problem. Finally, assuming that the
equations are now tractable, one proceeds to solve them either analyti-

cally or perhaps by direct numerical approximation methods.
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One must grant immediately that the distinction between these steps 1is

not always clear. 1ls approximating the Navier-Stokes equations by the Euler
" equations really different from approximating the flow about an elongated

body by that given by a slender-body approximation? One wmight argue that F

the first involves a physical parameter associated with the fluild and the

T g

latter a geometrical parameter, but both are approximations., As further
cases are considered, one realizes that the boundaries are fuzzy.

However, these problems, important and fascinating ss they are, will

o

not concern us here for we are going to limit curselves to just one aspect
of the procedure outlined above, namely, the finding of analytical solutions
P once a tractable problem has been formulated. Tndeed, we shall reatrict
our attention still further, namely, to pioblems with a free surface in
which the fluid is assumed to be inviscid, incompressible, and subject to a
: gravitational force and in which the flow is assumed to be irrotational. ;
} In addition to these restrictions we shall also assume that the boundary
: conditions are linearized.
§ It is obvious that we are bypassing a host of interesting questions. i
E We ghall not consider how or whether the linearized equations we deal with .

can be made part of a systematic approximation scheme. This problem will
| be relegated to one of the other "steps" described above. We have re-
3 stricted the purview of these lectures so drasticcally for the following
% . reasons. Although a single topic could be selected and developed fairly
: intensively, in a set of eight lectures each lecture would have to be

$ bullt upon the preceding ones. The audience would necessarily have to %

; devote some thought between lectures to the topic under discussion in order ;
i ' to keep the whole development in mind. And, of course, regular attendance %
: would be necessary. Since the situation is different from a university, j
where both outside study and regular attendance can be expected, it seemed .

more useful to select a subject that can easily he divided into one- or

tta b e o

two-lecture units so that not too much baggage has to be accumulatd as one

proceeds. 1 believe and hope that this will not make the lectures less

s’ s e

interesting.
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The lectures will conaist of a discussion of the several methods in
use for finding analytical solutions for free-surface problems. Each
method will be illustrated by one or more examples, which we hope will
theaselves have some intrinsic interest. Several of the examples could
be solved by more than one of the methods, and it would undoubtedly be
interesting to do this. The original intention was not to do so in order
to obtain a greater diversity of physical problems. However, the examples
treated do tend to fall into one area: diffraction and forced harmonic
motion. This was not necessary. It just so happened that such problems
seemed to be among the simplest with which to illustrate the various
methods.

The methods will be chiefly the following: separation of variables
and the Fourier method, the method of reduction and reflection, the
method of Green functions, the method of multipole expansions, and, time
permitting,* variational methods. I shall try to indicate some of the
advantages and disadvantages of each and the limitations in their use.
Since the easiest problems have usually been solved first, the examples
will often not be from the recent literature. On the other hand, they
are also the most useful for purposes of illustration just because they
are fairly simple. I shall try to compensate for this by calling attention
to recent literature in which the method under discussion has been used,
I do not wish to imply that solving more complex problems simply required
the investigators to turn the crank a little harder. Difficulties almost
always arise in spplying one of the methods to a new problem, and it may be

necessary to alter it in some appropriate way.

*
It did not.
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PART 1: THE BASIC EQUATIONS
As coordinate system we begin with an inertial one fixed in the fluid,
We choose 1t rectangular and right-handed and with Cy directed oppositely

;
j
i
i
i
!

to the force of gravity in both two and three dimensions. The undisturbed

v R A R )

water surface will be taken as the (x,z) plane. As stated above, we suppose

the fluid to be inviscid and incompressible and the motion irrotational.

Consequently, there exists a velocity potential ¢ (x,v,z,t) with absolute

Tk e

E§ i velocity ;
i ] ?
: V= grad ¢ = V0 = (2,,2,0) (1.1) ]
i
% Conservation of mass gives :
[ ' Ab=06 +& +0 =0 (1.2) i
E) : XX yy zz

iy

!

The three conservation-of-momentum equations (Euier cquations) reduce to

Bod T ek 2,

Euler integral

Qt + %—]V¢|2 + gy + p/p = constant (1.3)

T T3 U

If the free surface is represented by

R i il
TR J .0 SR ORVPL IR S-S T SNt ST

y = Y(X,Z,t)
then the kinematic bound-ty condition on the frae surface is
i i
e i ] ;
{ ¢x(x,Y,z,t)Yx @y + ¢ZYZ + Yt 0 (1.4) ,
E

A2 ALt

and the dynamic boundary condition is

R TRARS

; ﬁ o (x,Y,z,t) + 3 |V8|? + g¥ = 0 (1.5)




o, - ———. b

b .

b 'E

g' If a solid boundary is present, then the kinematic boundary condition states ;

g > > ;

13 = Ve . i

<I>n Ven (1.6) 1

? at each point of the surface, where V is its velocity at that point. If 3

; the surface is given by 3

£ -

5 F(x,y,2z,t) = 0 (1.7) :

:
" ¢ this condition may be written in the form ;
| F +oF +®F +F =0 (1.8) ;
3 X X Yy z' z t i
3 3
” Dynamic boundary conditions may also be necessary on solid boundaries. i
i ' 1
> | : For example, in the case of freely floating bodies, these take the form of é
g ; the Newton equations for motion of a rigid body. %
? . We have stated earlier that we shall consider only iinearized problems g
s : without discussing the rationale of the linearization. The Laplace equa- i
b . 7
E; : tion is already linear, but the solution of a nonlinear problem will not, :
1 é of course, be the same as that of a corresponding linearized problem. The %
3 ¢ two free-surface conditions become i
5 5 i
] $_(%,0,z,t) - Y =0 (1.9)
3 : y t ]
3 & L
4 i !
1 ¢t(x,0,z,t) +gY =0 (1.10) !

3 & E
i .

3 : If Y is elimirated, this condition becomes ;
; ® _(x,0,z,t) +gd =0 (1.11) i

¥ te y ;

3 "

: Linearization of the boundary conditions on solid boundaries is more com- ;

¥ H )

t licated for it will depend upon the nature of the problem and the basis 5

of the linearization.
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ﬁ The free~surface conditioan (1.11) may appear in different forms, ;%
§ depending upon the circumstances. If the motion is assumed to be harmonic ;
, J
3 : in time with frequency O, we may write #
.
{I 4
: § P(x,y,2,t) = ¢l(x,y,z) cos Ot + ¢2(x,y,z) sin Ot :
. «R_ (629, ¢ = ¢ + 10 (1.12)
T e VT : 1 2 .
(.
E; Then (1.11) becomes ;
i 4
%
| $(x,0,2) - B~ ¢_ = 0 (1.13) .
'
f} If it is convenient to use a moving coordinate system x = X + ct, y = ;, ‘
gf z = E, and if ¢(§,§,§,t) = ¢(x,y,2,t) then (1.1ll) becomes ﬁ
1 %p_ (%,0,7,t) - 2c0_ + 0, - SO_+ gb_ =0
i XX xt X y 3
j If the motion is steady in the moving coordinate system, then ¢ does not : %
3 ; depend on t and the three middle terms drop out. 7
i :
ﬁ We assume that these equations and their provenance is, infact, known. g
a They are given only for ready reference. 5




PART 2: THE FOURIER METHOD
This is probably the oldest and most widely used method for solving

boundary-value problems in mathematical physics. It is the classical method

of sebaration of variables, determination of eigenfunctions, and expansion
of the solution in them. The expression m2y take the form of either a sum
or an integral, and we shall give an example of each.

A limitation of the method in application results from the fact that

; . we usually would like to identify the surface upon which boundary values :
are imposed with coordinate surfaces of the variables. This explains why

so many of the examples of ciassical physics deal with rectangular, circu-

lar, and elliptical cylinders and with rectangular solids, spheres, ellip-

ik s ottt 2

soids, etc. These all fit intc some system of variables in which the

equations are separable, However, the possibilities are limited for there

: are only eleven coordinate systems in which the three-dimensional Laplace

T TR PR T X T W L e R NI T £ -
I 7 ~ T AR e R ST T RN =

equation can be separated snd five in which the two-dimensional one can be ;
separated (see e.g., an article by N. Levinson, B. Bogert, and R.M. Redheffer i
on pages 241-262 of Volume 7 (1949) of the Quarterly of Applied Mathematics . 1

and references cited there). We shall be concerned only with coordinate

systems in which one of the coordinates is y.

& SEPARATION OF VARIABLES

¥ We shall look for a solution in the fcrm

T L, VT B S T
w
e

ool e Dbt dn e b A et oo 13

¢(x,y’z,t) = X(X,Z) Y(Y) T(t) (201)

Substitution into A® = 0 ylelds

N SR VS L

X

oA ‘al -
o T Ky,) YT+ XY"T = 0

TS PR VEN

or, if we assume X and Y are not identically =zero,

A.X "
< X_ - (2 DY
X - Y 0 (2. L)
7

s BN gt e = e e e e e e . T 2
IO TR T T e A <
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Each term on the left~hand side must be a constant, say, ¢ and B, respec-

tively, where
o+ Bs=0 (2.3)
Hence
A,x = ax = 0, Y' - BY = 0 (2.4)
It was stated above that one of the situations in whichk application of
separation of variables is most convenient i3 where one of the boundaries
is a coordinate surface. The surface y = 0 is already such a surface. Let
us choose the bottom to be another such. We shall consider two cases. In
one, a horizontal bottom exists at y = -h. In the other, the fluid is
infinitely deep. In the first case, the boundary condition (1.6) becomes
¢y(x,-h,z,t) =0 (2.5a)

In the second case, we shall relax this tc the condition

|¢y(x,y,z,t)| <M<wagy+=-o (2.5b)

For the function form (2.1), these imply
Y'(-h) = 0 and [Y'(y)| <N<wagy> -~ (2.6)

We next substitute (2.1) into the free-surface condition (1.11) to
obt.ain

X(x,2)¥(0)T"(t) + gx¥'T = O

or

G Sk plr i
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T"(c)+g%-%r-o

We shall restrict attention to the case where the coefficient of T is posi-

tive and write

o® = g¥' (0)/Y(0)

The solution for T is then

T = A cos ot + B sin Ot

Let us now consider the equation for Y,
Y - RY =0

If we choose B = k2 > 0, then

Y=ce +pe¥W

The boundary conditions in (2.6) then yield

Y = cosh k(y + h) and Y = eky

(2.7)

(2.8)

(2.9)

respectively. (The multiplicative constant can be safely dropped since

this is already provided for in T in (2.8).)
But now (2.7) gives

02 = gk and 02 = gk tanh kh

for h = © and h < o, respectively.

(2.10)

RET I
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From (2.3) and (2.4), we then find that X must satisfy

-0 ARV

B,x + K = 0 (2.11)

Next we choose B = -k2 < 0. Then

Y = C cos ky + D sin ky

The boundary condition Y'(-h) = 0 yields ;

Y = cos k(y + h) (2.12)

For infinite depth, boundedness imposes no further condition. However,
from (2.7) we deduce

! 2 D

3 o =gkg ;

! i

|

| so that we may write .

; 2 |
Y = cos ky + oK sin ky (2.13) !

Equation (2.13) reflects only the effect of the free surface and not of the
bottom.

JUBILR AU VI

Equation (2.12) substituted into (2.7) gives

[RCTORRTRNE - DRUHES S

62 = - gk tan kh (2.14)

The equation for X that is associated with B = - k2 is

POt - n
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Let us now suppose that 0 is fixed and ask what values of k will be
determined for h < = by (2.10) and (2.14). This is easily seen from a
graphical display. We write (2.19) and (2.14) in the form

2 2
h 1 och 1
2 h tanh kh and 2 KT " tan kh (2.16)

A graphical solution of the first equation shows a single solution (see
Figure 1).

tanh(kh)

——~ kh

kgh

Figure 1 - Graphic Solution of First Equation in (2.16)

By the same method one finds an infinite number of solutions for the

second equation (see Figure 2).
For the case h < », we have now obtained the following solutions for &:

xo(x,z) cosh ko(y + h) [Ao cos ot + BO sin ot])

(2.17)

o® = gk, tamh kohs A,X + ky2x = 0

R o
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LI I ey 0 e e el
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2
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4
Aq




hh—
o
i
i
and : :
xi(x.z) cos ki(y + h) “‘1 cos Gt + B, sin ot]
(2.17) ';
2 | _ 2 . . | :
g gki tan kih‘ Azxi ki X4 0 s ;
5
]
- | |
|
: L | - —
: ! kh
L 0 | kqh 1r | koh 27 | kgh ;
1 :
1 I | I j
i | - -tan{kh) l
P | | | |
|| |
Figure 2 - Graphic Solution of Second Equation found in (2.16) i
A sum of such terms (appropriately convergent) will evidently also be a 3 .
solution. With regard to the family of functions *
!
{cosh ky(y + h), cos k;(y + h), cos k,(y +h)....} (2.18) i
it is possible to prove the fullowing property: Any pair of functions is
orthogonal on the interval (~h,2), i.e.,

12
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0
I cosh ko(y + h) o8 ki(y + h) dy = 0

0 (2.19)

I coski(y+h) coskj(y-i-h) dy = 0 if 4 # §
~h

One may prove also the fcllowing theorem:

Theorem: If f(y) is defined and square-integrable on the interval [-h,0],

then
v
£(y) = bo cosh ko(y 4+ h) + Z b:l cos ki(y + h) (2.20)
i=]1
where
2 I
b = sinh 2k B F Zigh £{y) cosh k(v + h) dy
and

0

bk, ‘-
by SRR ¥ zgR g, (W) s )by

The formulas for the b's follow from the orthogonaiity.

For h = <, we have the following solutions for ¢:
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x(x,z) eky [A cos ot + B ain ot],

o? = gk, d,x + k¥ = 0

2
x(x,2) | coa ky + 9_ oin ky | (A cvs ot + B sin ot],
gk

-l

(2,21)
k arbitrary, Azx - kzx =

Do we have anything analogous to the representation theorem (2.2Q0)? There
i, in fact, an analog, first given by Havelock in 1929, that is reducible
to the Fourier-integral theorem. 1t is as follcows:

Theorem: If f(y) is absolutely integrable on (- %, 0), then

o 0

+ \ : +
£(y) ...12? L dk I dn £(n) (k cos ky + v sin ky)(k ccs kn + v sin kn)
-00 k + v
(2.22)
0
+2v eV I £(n) e dn, v = o%/g
-

We may write this in a form more closely analogous to (2.20) by pre-

senting it as a pair of transforms:

0
£(y) = b, eV + I b(k) (k cos ky + v sin ky) dk
0
0

by = 2V f £(n) e dn (2,23)

b(k) =

EE

7 2 dn

0

+ in k
If(n)kcosm v sin kn
] k™ +V
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[ The proof of (2.22) is by reduction to the ordinary Fourier integral theorem.
; It may be presented as follows:
| = (0 2 2
" £y) = 2 J de dn £(n) [-5—‘3--2- cos ky cos kn + ——>— sin ky sin kn
0 -o0 k® + Vv k" + vV
kv E
| + 2 3 (#in ky cos kn + cos ky sin kn)] )
kK" + vV “
) ° ]
+ 2v ¥ I £(n) e dr, 3
t -t "
| -
[ 2 v 3
i : - f dk[ dn £(n) [cos ky cos kn ~ -3 cos k(y + n) ;
- 0o K 4y
% +— kv 7 sin k(y + n)]
o k™ + v ;
3 ' 3
: |
+2v % I £(n) e dn
o 0
-% I de dn £(n) [cos k(y + n) + cos k(y = W] i
0 -0 %
0 2
gf xR N em_T v+ i
é + T J dn £(n) [ 7 v © 7 Ve
: 3

e

0
+ 2V ewf £(n) e\m dn
-0
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-%f de £(n) dn cos k(y - n), with £(-n) = £(n)
0 -0

= £(y) ; 1
by the usual Fourier integral theorem. We have made usa above of the fol- i
lowing two integrals: !
]
[} L] .
f cos_mx I -|m|f xsinmx , T -ma :
0 "3 2 2clx 2s © .0—-—-——-2'2dx 7 e ,m>0, a>0 !
a +x a +x i
Further separation of variables should now depend upon the nature of 3
the problem to be solved. In one that we shall consider below, a wavemaker j

at one end of a rectangular channel, it is natural to use again rectangular
coordinates a-nd to assume X(x,z) = X(x)Z(z). If one wished to find the
wave motion generated by an oscillating vertical post of circular cross
section, one would use polar coordinates. However, as mentioned earlier,

the number of possible configurations is very limited.

tangular coordinates. Substitution into (2.11) quickly gives

or

If y = q2 > 0, then

and

We shall determine the functions X(x) and 2(z) for separation in rec-

" "
§-+§-+k2 -0 (2.24)

avttaiths b Libu

X" —aX =0, Z' =yZm 0, a+y= -k <0

z=Cel%+peit

DY YR FI Ty JUECR VR T TNV PO 0L

(2.25)

1/2 1/2x

X = E cos (k2+q2) x + F sin (k2+q2)

3
]
1
i
k|

16
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If y = - q2< 0, then

Z=Ccos qz + D sin qz (2.26)

and

1/2 1/2 2 2

X = E cos (k2 - qz) X + F sin (k2 - q2) x if q <k

X = E exp (q2 - kz)llzx + F exp [—(q2 - k2)1/2¥] if q2 > kz

If we substitute into (2.15), we again obtain (2.24) except that now
a+y = kz. Now if y = q2 >0,

z2=Cel®4+pe® (2.27)

and

1/2 2 2

X = E cos (qz - kz) x + F sin (q2 - kz)llzx if ¢ >k

X = E exp (k2 - qz)l/zx + F exp [-(k2 - qz)llz;] if q2 < k2
2
If Yy = -q” < 0, then

Z=Ccos qz + D sin qz (2.28)

and

X = E exp (k2 + q2)1/2x + F exp [-(k2 + q?‘)l/zx]

This is a complete cengsus of the possibilitites in rectangular coordinates.
Let us now turn tc some applications. The first one is a wavemaker
at onz end of a semi~infinite rectangular channel. The second is a wave-

maker in a wall bounding the region x > 0, y < 0. The treatments parallel

17

ULV IRV IRS P OPRWE § Werpee UV ¥ IPRIU I g v

T

o

et de b o T bt s




each other except that the y- and z-dimensions are bounded in one, and in-

tinite in the other. The first employs Fourier series in the solution,

the second Fourier integrals.

T
A
b

1 ; WAVEMAKER IN A CHANNEL
4 % Consider a semi-infinite channel bounded by plane walls at y = -h and E

{ z=0and z =b. At x = 0 there is situated a wavemaker that moves accord- ]

ing to the equation

PN

F x = F(y,z) sin ot (2.29)
£ .

3 The channel extends to infinity in the direction Ox. In practice, this
o can be approximated by having a very efficient wave absorber at the erd

awvay from the wavemaker. A wide variety of wavemakers, both two- and three-

dimensional, can be described by a proper choice of F(y,z). We shall fur-
ther assume that the motion has persisted for a long time, so that transient

motions associated with starting the wavemaker have died out and the fluid ;

motion is alsc harmonic with frequency a.
ﬁ Let us formulate the mathematical problem. We may evidently take ¢ in
% the form (1.12) and the free-surface condition in the form (1.13). The

NS H-

boundary conditions on the sides and bottom will be

prdi

¢z(x’}'ao) = ¢z(x’y’b) = 0’ q)y(x’ "'hs Z) =0 (2-30)

The linearized boundary condition on the wavemaker corresponding to {1.6) is

b o 15l

TS RS - O Y SRR T
b i, o

¢x(0,y,z,t) = oF(y,z) cos ot 4

or

0,,(0,¥,2) = OF, ¢, (0,y,2) = 0 (2.31)

There is still one missing condition, but it will be more interesting to

i el Pt M I i

see this forced upon us later on.
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In order to solve this problem, we shall try to use the family of
solutions given in (2.17) together with the solutions for X given in
(2.25)-(2.28). First of all we note that the boundary conditions on the
side walls given in (2.30) cannot both be satisfied with any combination
of the exponential solutions (2.25) or (2.27). These conditions will be
satisfied by the trigonometric solutions (2.26) and (2.28) if we take C
and D such that

Z = cos-;l—."-z, m=0,1,2,.... o (2.32)
In choosing the X's to go with the Z's, we mnust remember that in (2.26)
k must be ,kO and in (2.28) k may be any one of t.he'.'k:L (sge (2.17)). Finally,
since we are interested only in bounded solutions, we must discard the in-
creasing exponential in the exponential solutions for X. If we now sum all
these elementary solutions with arbitrary multipliers, we anticipate that

the solution to the problem can bz written iu the following form:

M : .
¢(x,y,z) = Z Am .cO8 [koz - (%I-)z] 1/2x - me sin ECOZ - (%E)Z]I/Zx ‘.
m=0

mm
cosh ko(y + h) cos 3 2

= mT 2 2 /2 m7
+ E bm exp [— ((-b—-) - ko ) x] cosh ko(y + h) cos T2
m=M+1 )

2 . 2 (mm 2\1/2 m1
+ E : bim exp |- ki E—) x| cos ki(y + h) cos 52 (2.33)
=] m=

where M is the largest integer m such that %ﬁ- < ko.
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This function satisfies the Laplace equation, the free-surface conditionm,

and the conditions on the bottom and sides of the channel; ¢ may be either

¢l or ¢2.

Let us examine the condition (2.31) on the wavemaker:

M 241/2
b = - 2 - __m‘lT __-m"
q>x(0,y,z) z bm [ko (b ) ] cosh lko(y + h) cos b 2
=0
(=] 2 1/2
mT 2 mT
+ -b [(b )-ko ] cosh ko(y+h) cos =z
m=M+1 ' '
[--] €0 2 1/2 :
2 m mT
+ E E - bim [ki +(b—) ] cos ki(y + h) ccs 5 2 (2.34)
i=1 mwm=0 ’

I1f we now use the orthogonality of the furctions {cosh vko(y + h),
cod ki(yv+ h), i = 1,2,...} Stated in (2.19) and the well—~known orthogonality

of the family {cos =% z,m = 0,1,2,...} on the interval 0 < z < b, we may
b —-— PR

easily derive the following formulas for the b's:

- 241/2
- Iy 2 _ /m'n) -
8k0 (sinh Zkoh + Zkoh) [_kO ’\b ] bm ,
0 b
=J dy J dz ¢x(0,y,z) cosh ko(y + ») cos %1 z, m <M
~h 0 )
(2.35)
2 1/2 '
-2 2 @L) - k.2
ako (sinh Akoh + 2koh) [( kc ] _ bm

0 b A
=-J. dy J. dz ¢ (C,y,z) cosh ko(y %y cog %—E z, m>M+1
“h 0 X A BN
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2,1/2
b 2 mn
- (sin 2k.h + 2k h) [ki +(b ) ] by

0 b
-"(h dyj; dz ¢x(0,y,z) cos ki(y + h) cos ;:—“ z, i>21, m>0

In order to determine ¢1, we replace ¢x in (2.35) by OF; to determine
¢2, by 0. As long as ko
integer m, all coefficients b are uniquely determined. The completeness

is such that it is never equal to ov/b for some

of the two orthogonal families for representing functions on -h <y < 0
and 0 < z < b tells us that any square-integrable function F can be so
represented. For ¢2, the b's are cbviously all zero.

Have we now determined the functions ¢l and ¢2? Evidently not, for
85 «+-> @y are not determined for either ¢1 or ¢2. Since we have now satis-
fied all our boundary conditions, we must conclude that either the problem
does not have a unique solution or else that we have not completely formu-
lated it. Here the latter is true. If there had been another wall at
x = £ > 0, we should have had another boundary condition to determine the
coefficients. We evidently need something to replace it. This is the

radiation condition, which states that waves must propagate down the chan~

nel, i.e., in the direction Ox. The terms exponential in x play no role in
this condition for they die out as x increases, representing oanly a local
disturbance near the wavemaker. In order to apply the radiation condition,

we may write the solution in the complete form
o(x,y,z,t) = ¢l cos ot + ¢2 sin ot

and then chooge the a's so that each of these first M terms represents a

progressive wave moving to the right. It is easy to see that this is

(1) @ _, W
m m

= 0 and a , where the superscripts

achieved by taking a

21 /
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respectively refer to ¢)1 arnd ¢2, for then the first M terms take the form

M .
Z-bm(l) ‘sin {[k02 - (:_v)Z ]llzx - ot l cosh ko(y + h) cos :—“ z
w0

This choice of the a's has been forced upon us by the radiation condition,
the latter being necessary to achieve a unique solution. However, if the

problem had been formulated as an initial-value problem in which the motion

-started from rest, this solution wbuld have been obtained automatically.

It will be convenient for discussion of its properties to write the
solution in a slightly different form. Define

0 b
8k0 I J m7
Co ™ T [sinh 2k.h + ZE.h] dy ) dz F(y,z) cosh ky(y + h) cos 3= z
(4] 0 -h 0
(2.36)
c = Bki J'o Ib m7
im b Tein Zkih T Zkih] N dy . dz ¥(y,z2) cos ki(y + h) cos 5 2

Then ¢ is given byv
M
) g . 2 _(mm
P(x,¥,2,t) Z 7172 C“1 sin [[ko -(b )
=[x, ()]
0 b

X cosh ko(y + h) cos %T-T- z

2-1/2

x—Uti
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- 2 2 . . exp ' - [(%’l)z- koz]lfzx} cosh ky(y + h)

X cos -;-:I z cos Ot

[- -] o0

_2‘2 Um 5 ]1/2 Cim exp - [kiz + (:—“)2 ]llzx cos ki(y + h)

5D [ ()

X cos L")E z cos Ot (2.37)

According to (1.10), the free surface itself is given by Y = —g-l¢t(x,0,z,t).
It is as follows:

M
k, sinh k.h 2 1/2
Yz, = 7 _0 9 2 _ (mm) mn
et 2 241/2 Cm cos [ko -(b ] X - Ot } cos b z
mmT
= [ (@]
o b
x k, sinh kh 2 1/2
- 2 2 ory | 2 mn
Z ) , 172 Cp exP {'[(b ) L ] x}cos 5 Z sin ot

m=M+1 5 - ko

é‘é[ )]1/2 me"p{ [k12+(

Let us examine the solution. It is evident that it breaks down for

U‘IB

2.1/2
) ] X}cos %T-r- z sin ot

(2.38)

any ko such that ko = mn/b for some integer m. Indeed, the formulas deter-
mining the bm in (2.35) do not do so for the particular m for which this

happens, so that we have not, in fact, found a solution for such a value
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of ko (or its associated frequency 0). Hence, there is an infinite sequence
01,02,03,... for which no solution appears to exist. Let us examine the
behavior of (2.38) in the neighborhood of these frequencies.

We shall make a thought experiment in which the frequency O starts
out quite small and then increases little by little through these special
values ci(Figure 3).

|
|
| I I
| |
I | |

1 I - ih

0 koh T 2rh 3h arh
b b b b

Figure 3 - Critical Frequencies for Wavemaker in a Channel

When ¢ is quite small, koh < 7h/b and M = 0., After the local dis-
turbance has died out, there is then a single two-dimensional progresaive

wave propagating down the channel:

C0 sinh koh cos (kox - ot)

However, as O approaches 01 from below, koh + Th/b and the coefficient of

the first exponential term in the second summation

24
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k. 8in k.h 2 1/2
c 0 0 Ty©_ . 2 i
1 2 172 exp {'[(b) ko ] x, cos T 2 sin ot

Ul 2
[(b) - ko ]
grows unboundedly. At the same time the coefficient of x in the exponen-

tial d. reases, so that the disturbance no longer dies out so quickly.
If ¢ is increased just beyond 01, then M = 1 and the first summation

consists of two terms

C0 sinh koh cos (kox - Ot)

and

ol

in 8inh k.h
c -r- ’9-—(“)2—-—-%/—2 cos ‘[koz -(
-6 )

The first is, f course, a two-dimensional progressive wave. The second
represents a progressive wave of longer length sloshing from side to side
It might be indicated schematically as shown in Figure 4.

241/2
) ] x - Ot ’ cos'% z

as it progaguaies.
If o is close to ol’ its

Jones

TROUGH

el

ob..s-.-—ﬁ\

F Figure 4 ~ Representation of Sloshing Progressive Wave

amplitude will be very large. As O increases, its amplitude will decrease
E and approach Cl sinh koh. However, before ¢ increases very much, it will

approach 0, and another "catastrophe'" will occur. After passing 0y, 8
third tyy~ of progressive wave modulated by cos (27/b)z will be added to

the first two (s<. Figure 5).
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Figure 5 ~ Representation of Third Type of Progressive Wave

It is evident that every time ¢ passes thiough a valuye O there is

an associated crisis during which a new progressive wave is added, begin-

ning with a very large amplitude. These frequencies are sometimes called

"cutoff frequencies." One should note that even though the wavemaker is

carrying out a three-dimensional motion, the resulting progressive wave
will be two~-dimensional if ¢ is small enough, i.e., ¢ < 01. On the other

hand, if the motion of the wavemaker is exactly two-dimensional, so that

F(y, z) = F(y), then Cm = 0 for m > 1 and also Oim ™ 0 for m > 1. Thus,

none of these crises occurs. However, if the supposed two-dimensional

wavemaker is only a little out of true, one may anticipate the catastrophic

behavior described above.
One may argue legitimately, that the linearized theory is no longer

a valid approximation in the neighborhood of these cutoff frequencies.

However, the behavior described above does occur and is well known. It is

not the rame as a similar phenomenon known as 'cross-waves," recently

studied by Garrett (1970), Mahony (1972), and others (Garrett gives a his-
Cross-waves are a nonlinear phenomenon. I am

tory of this pheromenon).
It is included

not sure who first solved the problem we have just examined.
in the Biesel and Suquet's (1951) encyclopedic article on wavemakers, and
certain aspects have been studied in more detail by Kravtchenko (1954).
However, it is accessible to anyone familiar with the methods of classical

mathematical physics.
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One question mey vemain. Since we have not found a solution for the
cutoff frequencies Oys what should be done about them? These are like the
rescnance frequencies in forced motion of a harmonic oscillator. One must
reformulate the problem as an initial-value problem. Then one may artici-
pate that the sclution for these frequencies will grow without bound as

t + ™,

WAVEMAKER IN A WALL

As an example of the use of Fourier integrals and of the representa-
tion theorem (2.22), (2.23), we have chosen a problem similar to the oune
Just discusged. The chief difference is that the bottom and side walls
are removed so that the only boundary is the wall at x = 0, The fluid is
in the region x > 0, y < 0. The wall itself is flexible and moves accord-
ing to the equation

x = F(y,z) sin ot (2.39)
where we a2ssume that
0 )
I dy I dz |F(y,2z)| < = . (2.40)
- O -00 [

As before, we assume that the motion has become harmonic in time.

The mathematical formulation is similar to that of the wavemaker in a
channel. We take ¢ in the form (1.12) and the free-surface condition in
the form (1.13). The first two conditions of (2.30) are abandoned and the
third replaced by

1lim ¢y(x,y,z) =0 (2.41)

y-’-@
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The boundary condition (2.31) still holds. In addition, here, as before, | E

we need an explicit condition stating that the waves propagate away from 3
the wavemaker. ‘ , ;

[t agg ey

o p T

We must now make a selection of the solutions (2.21), (2.25)-(2.28).

{ 4 The exponential solutions in £z must be discarded because they become un-
‘ bounded on one side or the other.

rp gt

The decreasing exponentials in x are
allowable. The most general solution for ¢ that satisfies these conditions

= irs R T,

1'Jk dq exp [-~(q2 - vz)llzx] [Co(q) cos qz + Do(q) sin qz] e
V)

s

i 3 is the following: E
. 1
P v i
| i _J' d 2 _ 2,1/2 ‘ . i
‘ % ¢(x,y,2) A q jeos [(V" = q7)7" "x] [A;(q) cos qz + B,(q) sin qz] :
H i
il ; - sin [(V2 - q2)1/2x ] [Cy(a) cos qz + Dy(q) sin qz] } e %
fy i \d B
4

i

CETRINE
G R A e G s T L e L f bate sy
e bt

: +I kol dq exp [--(t:(2 + \)Z)llzx] [C(k,q) cos qz + D(k,q) sin qz]
* 0 0

x [k cos kz + v sin ky] (2.42)

AN 8 . 1 1T

Here, ¢ can be either ¢l or ¢2. We can confirm immediately that (2.41) is
satisfied if the integrals exist. For the single integrals, this follows

from the form of the factor eV, For the double integral, this follows
from the Riemann-Lebesque Lemma.

3
1
3
1
4
i
4

o et o dgitem it | K

Let us now compute
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A
$,0,y,3) = -,[ dq(v? - ¢H1/2 [Cya) cos qa +Dy(a) sin qa) oY

-J‘ dcl(tl2 - V2)1/2 [Co(q) cos qz + Do(q) sin qz] Y
Y

-I dkf clq(q2 + kz)]'/2 (C(k,q) cos qz + D(k,q) sin qx]
0 0

X [k cos ky + V sin ky] (2.43)

0’
do this we shall need both the ordinary Fourier transform as well as (2.23).
We recall that the former may be written as follows: 1If

We should like to invert this to obtain C DO.C. and D in terms of ¢x. To

f(z) -J’ dq [A(g) cos qz + b{(q) sin qz] = ReJ‘ dq(a + 1b) e‘iq'
0 0

then

o0
a+ib= lf dz £(z) e1%®
"-—m

We apply (2.23) first and treat z as a fixed parameter. Then
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et dll

-J; dq |\)2 - qzlll2 [CO(Q) cos qz + Do(q) sin qz]

bo(.) - E
: 3
. 0
: = ZV‘I ¢x(0,y.:) VY Jdy
o -00
é {
? and
® ;
i \ :
o b(k,x) = -_[ dq(q2 + kz)]‘/2 {C(k,q) cos qz + D(k,q) sin qz] 1
: 0 ;
1 ;
Zf k cos ky + v sin ky 3
iy ¢ (0,)'.8) dy :
T X k2 + v2 i

The ordinary Fourier inversion integral now gives

b b L

0 ® i

vy _+iqz 3

- v - M2 1y + 1oh(@)] = -2,,2_[“ "’L dz 9, (0.y,z) ™ e
(2.45)

and
0 )

24 Y2 k) + o) =25 [ 4y [ ae 0 0
L =0

- (k" + q

-0

k cos ky + v sin ky e1qz

k2 + 2

The coefficients Ao(q) and Bo(q) have not yet been determined for
either ¢1 or ¢2. For ¢2. since ¢2x(0,y.:) = (0, all the C's and D's are
xero and ¢2 takes the form
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; 2 _ 2102 3
7 @2(x.y,z) -‘!; dq cos [(V° - / x) lA02 cos qz + 302 sin qz] e
E If ve consider only the part of ¢ co8 Ot + ¢2 sin Ot involving the first a
integral, we find ]
5 v ]
; j dq 'cos [(\)2 - qz)]‘/zx} (Aol cos qx + 301 sin qz] cos ot
a E
g - ain [(v - )1/2x] [C,, cos qz + D.. sin qz] cos ot
} 1 01 N 01
S
{
! + cos [(\)2 - qz)llzx] “‘02 cos qz + By, sin qz) sin ot } ey
{ f
§
In order that this should represent an outgoing wave, we must set
? - :
fo1 = Boy ¥ O Agy =+ Cyy, By, =+ 0y 1
; !
: This gives for this integral f
v
-f dq sin [(\)2 - q2)1/2x - ot) [C01 cos qz + D01 sin qz) eV 7
0
i
—%f { sin [(\J qz)llzx + qz - ot} + C01 sin [(v2 - qz)llzx ‘
0
-qz - ot) - D_.. cos [(\:2 - qz)llzx + qz - ot} + D.. sin [(V - q )1/2 i
0l 01 i
! - qa = ot) }evy (2.46)
;
£ 3
£
:
3 NS0) i
;
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The functicns COl’ DOl’ C, and D are, of course, known frum (2.45) with
¢x replaced by oF(y,z).

The solution has no especially interesting pruperties like those occur-
ring in the chavnel. This fact is associated not with the infinite depth
but with the infinite width. The cutoff frequencies would also have occurred
here if there had been walls at z = 0 and z = b, In this case the solution
would have been a bit different in that we would have used Fourier series in
the z-direction rather than the Fourier integral.

Let us compute the average rate at which work is being done by the
wavemaker. According to the linear approximation, the instantaneous rate
is

' 0 &) . 0 oo
W(t) = J‘ dy J’ dz p(0,y,2) u(0,y,z) = ~p '[ dy'[ dz ¢ (O,Y,Z,t) o (O,Y,Z,t)
00 e CO Lo o X t

- pJ..,[dydz [¢lx cos Ot + ¢2x sin ot] o [-¢l sin ot + ¢2 cos ot])

2 2
- po.[fdydz [¢lx¢2 cos” ot - ¢2x¢l sin” ot

+ (-¢1x¢1 + ¢2x¢2) sin ot cos ot)

- poz.[fdydz F(y,z) [¢2 cos2 ot - ¢l sin Ot cos ot]

where we have made use of the boundary conditions for ¢lx and ¢2x when x = 0,
1f we wish to find only the average rate, we must still integrate with re-
spect to t over one period 2m/0. This ylelds

= -1 2ff
W=—5 po dydz F(y,2z) ¢,(0.y,z)

v
P
= +-Epo .[ dydz F(y,z)‘[ dq [COl cos qz + D01 sin qz] e
’ 0

N \
=+ %po I dydz F(y,z)J' dq [Cy + 1Dy, elaz Vy
/ 0
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Using (2.45) with ¢1x(0,y,z) = gF(y.z), we find

*y

A - ’ \y -iqz
— -1
W= pc3dedz F(y,z)j dq 2t fr—“ Hdnd; F(n,z) "N 195

0 (VT - qz)

5 O @ 0 % AV
-, I ay | dz ) an f dg F(y,2) F(n.c)f dq 251 =8 Vi)

8 ‘o -0 © = ) . 0 " -q7)

5 0 © 0 o
-0 f dy | dz dnf 4t F(y,2) B0 " 50 vz - o))

00 = 00 -0
(2.47;

This formula is somewhat analogous to the Michell integral for the resis-
tance of a thin ship. Indeed, the latter problem is a kind of steady-state
analog in which one considers the flow past a small (= "thin") bump in a
walli. In fact, Michell derived this wave~resistance formula by a Fourier-
integral ﬁethod very similar to that just used; it is deacribed in Wehausen
(1973, pp. 143-148).

The problem discussed above was first solved by Havelock (1929). As
he pointed out, (2.22) or (2.23) can be used together with any other coor-
dinate system in which one can separate the function x(x,z) of (2.21). He
applies the method to the waves generated by the oscillation nf a vertical
circular post, but he considers only the simplest case when there is no
dependence upon the angles. An oscillation with angular dependence would
lead to situations of the sort encountered with the wavemaker in a channel.

The problem we have considered is essentially a simple one. However,
the method can be and has been applied to more complicated situations. For
example, Ursell (1947) has used it to investigate diffraction of water waves
from an obstacle in the form of a vertical plate of finite length, treating

it as a two-dimensional problem with normal incidence on the plate. Evans
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and Morris (1972) have extended the treatment to oblique incidence. 'Such

problems require finding a solution on each side of the plate and then
In addition, one must take

matching them at the interface below the plate.
A method that can be

into account conditions at the edge of the plate.
used to solve a diffraction problem can also be used to solve a related

forced-motion problem.
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-~ PART 3: THE REDUCTION METHOD
The eseence of this method is to comsider at first the function
¢, + g@y instead of ¢ itself. This function is also a sclution of the

tt . SR
Laplace equation and vanishes on the surface y = 0. Let us define

. au(xny‘nzst).. he ¢tt + 8¢y ' (301)

We extend the region of definition of H from those parts of the lower half-
space y < 0 occupied by fluid to their mirror images in y > 0 by the equation

H(x,-y,2,t) = -H(x,y,2,t) (3.2)

Since H(x,~0,z,t) = 0, it follows immediately that not only is H continuous

ony = 0 but also Hx’ Hz, H and sz. However, it also follows frowm the

definition that Hy(x,—O,z,t?x; Hy(x,+0,z,t) so that Hy is also continuous.
Furthermore, since Hyy = fﬂxxuuzz’ it follows that also Hyy is continuous.
Hence, H has been extended as a harmonic function into the upper half-
spacn. If the rest of the boundary conditions can be carried over to H and
do not complicate the problem, tbé solution for H may furn out to be easier
than that for ¢. Of course, after finding H, we are still confronted with
the problem of finding ¢, which may not be easy.

Although the method is presented above ii. a three~dimensional formula-
tion, it has found its greatest use in twc-dimensional problems where the
powerful methods of analytic-furction theory may be applied. We make a
small digression to review some of the basic facts concerning irrotational,
two-dimensional flow of an incompressible fluid.

The equations expressing conservation of mass and irrotationality

u + vy = 0, uy -V, " 0 (3.3)

are just the Cauchy-Riemann equations for u and -v, and consequently
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w ™ u =iV {8 an analytic functivn of z = x + iy. Furthermore, the first i E
equation ir (3.3) implies that there exists a stream function ¥Y(x,y,t) with % @
Wx - oY, Wy = y, But then ¢ and ¥ also satisfy the Cauchy-Riemann equations ; g
and : i
F(z,t) = 9(x,y,t) + 1¥(x,y,t) (3.4)

i E

is also an analytic function. It is easy to see that :
1

F'(z,t) = w (3.5)

E

,g

We shall call F the complex potential and w the complex velocity. ;
Let us now consider the combination ‘3

2) = ' s -

H (2) Ftt + 1igF Qtt + iwtt + ig(¢x i@y) ;

Qtt + g¢y + 1(‘&’tt + gwy) (3.6) ! 1

. 3

It follows from the free-surface condition that f ) :
[ '! ;

i

Re H(x + 10) = 0 3.7) ! ;

But then H(z) can be extended as an analytic function from the domain ‘
y £ 0 to the domain y > O by the Schwarz reflection principle: é
H(x - 1y) = - H(x + iy) (3.8) E

Tais of course, is the analogue of (3.2) and as in the three~dimensional 3
case, we hope to be able to exploit this extension to the whole plane to f
find an easier solution for H. 3
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The method has been used by so many persons that 1 shall not try to
sketch its history except to say that I believe it was first used in water-
wave problems by Levi-Civita. It has been extensively exploited by various
Russian hydrodynamicists but also by others in the United States and else-
where. To illustrate the method, we shall use diffraction from a vertical
plate immersed into the water to a depth #. This problem was treated in
this way by Haskind (1948). It can be treated equally well.by the method
of Fourier integrals, and in fact this waz done by Ursell (1947). The
method has receutly been applied by Evans (1970) to the problem of diffrac-
tion about a completely submerged flat plate. It is almost obvious that if
the diffraction problem can be solved by this method, then the problem of
the waves generated by small oscillations of the plate can also be solved.
This is also included in the citad paper by Evans. Later on we shall come

back to the reduction method when we treat the method of multipole
expansions.

DIFFRACTION OF WAVES ON A VERTICAL PLATE

We suppose that a flat plate is immersed to a depth 2 i1 an infinitely
deep fluid and is subjected to oncoming waves. Some part of these will be
reflected and some part transmitted, as indicated schematically in Figure 6.
In the neighborhood of the plate there will be a local disturbance that we

have not tried to represent.

Figure 6 - Flat Plate in Oncoming Waves
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3
The incident wave will be represented by ;
] i ¥, = A cos (kx + 9t), 0% = gk (3.9)
i :
f : with velocity potential
_j ; @I--oe sin (kx + ot) ;
i : E
= -'gé eky sin kx cos ot - gﬁ eky cos kx sin ot j
- ¢IC cos Ot + ¢IS sin Ot (3.10) 1
The associated complex potential of (3.4) 1s easily verified to be ;
1
!
g FI(z) = -1 gé e ikz cos Ot - ﬁé e ikz sin Ot (3.11)
: : = fIC cos Ot + f,, sin Ot

We shall denote the diffracted wave by QD so that the velocity poten-
i tial for the total motion is g

= @I + ¢D - ¢c cos Ot + ¢8 sin ot N

= (¢;c + ®pc) cos ot + (¢;g + dpg) sin ot (3.12) ;

- D2 I i Ll T T g /71 L N A,

Analogously, the complex potential is ;

F=F_ +F

I D = fC cos Ot + fs sin Ot

= (f__ + fDC) cos Ot + (fIs + st) sin ot (3.13)

IC

e
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The following boundary conditions must be satisfied on the flat plate:

0_(0,,8) = 0, or 95y(0,7) = ¢gu(0,y) = 0, 02y >  (3.14)

On the free surface, (1.11) must be satisfied by ¢ and °D and hence (1.13)
by ¢c, ¢S’ ¢DC' and ¢DS° In complex form these are the following:

On the plate:

R, £1(0 + 1y) = Re £1(0 + 1y) = 0, 0 > y >-L (3.15)

or in terms of FD’

; ky ' - ' -
Re ¢ e’ + fDC(O + iy)’ Re st(O + iy) 0 (3.16)

\

On the free surface:
Im {f' + ikf(x + 10)} = 0 (3.17)

» £
8

where f is any one of fc. € f

DC* "DS°

In addition, QD must represent outgoing waves at a distance from the

plate. In complex notation this may be expressed as follows:

lim (£, _kf ) =0, 1lim (f'. +kf_ ) =0 (3.18)
x+tm X DS 'x*iu DS DC

It is also necessary to specify the behavior of the flow near the

sharp edge at (0, - £) for there will be a singularity at this point. 1In
order to limit the power of this singularity, we shall suppose that

39

PRI

i o

gl s |

o bl

b il et st e

TR e

]
1
]
;
i
3
|
1
~4
E]
E|
X




|z + 1£i1/2 |£'(z)| <M near z = -i%

or in other words that

1/2

(z + 10)% £'(2) ' (3.19)

is regular at the point - if. This restriction is in conformity with

experience at similar cusps in hydrodynamics.

Finally we impose some further conditions at infinity:

|£'(z)| < B 41if 2| >2+1, y <0 (3.20)
and
lim  £'(z) = 0 (3.21)
y-b—m

Uatil we reach the point where we must deal with the radiation condi-
tion, we may safely omit the indices ¢ and s for the calculations are the
same for each.

Let us now introduce the auxiliary function

G(z) = £'(z) + ikf(z) (3.22)

which according to (3.17) satisfies the condition

Im G(x + 19) = 0 (3.23)
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By the Schwarz reflection principle, we extend G analytically into the
upper half-plane:

G(x + 1y) = G(x - iy) (3.24)
or
¢ (%o¥) - K¥Y(,y) = ¢ (x,-y) = k¥(x,-y)
and “by (x,y) + ké(x,y) = oy (x:-y) - ko(x,-y)

We have assumed in (3.20) that |[f'| < B if |z| > 2 + 1, y < 0. Let us
examine what this may imply for |G| Let a be some point of the region
(see Figure 7).

Figure 7 - Path of Integration

Then
z

£(z) -f £'(z)dz + f(a)
(Y

and consequently
2

|£C2) | < |I £'(z)dz| + |£(a)]
a

<3 |z-a|l+|fCa)] <B|z|] +4A
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? But then
E
‘ |6(z)| < € |2| +D, C, D> 0O (3.25)
g an inequality that holds in the whole region |:|,3 2 + 1, not just in the é
' lower half-plane.
i Near the point z = - if, we have assumed (3.19). Define ;
g M(z) = (z2 + £2)1/2 £'(z) !
‘ Then ]
|
: 2, ,2,1/2
i M'(2) = 2 £' + (2°+ 25 ° g 3
: (22 + 22)1/2 :
or ]
; i
5’ 22 + 12 M) = sl + 1D g 4 2+ 2D g0 i
3
Consequently 3
(2 + 1932 gr(z) = (22 + 1Y e w e + DY
é
3
- 22 + 1% N'(2) - 2 M(2) + 1k(z2 + 22) M(2)
z N(2) ;
]

Thus (:2 + 52)3/2 G'(z) is analytic at the point z = -1l and then also

through the reflection at z = i%.

42




R e L i 1 Tt S R

R el b, TP SR 19 1 LOG R L

e R LY . e -

o4 T RS ST ALY

Since (:2 + 22)312 G'(z) is analytic at z = + i%, it follows that

(: + L )1/2 G(z) is alsc analytic at =z = + iL. To see this, one may start

with G'(z) and calculate

o - 6w = [ @+ 1w ac
a

z
1 z 1 T
- N(z)| - = N' (%) dg
2% (22 + 1%H1/2 a 2 ‘[ @ + 212
or
2.1/2 1/2 1 a 1
(z + %) G(z) = (z + 1 ) G(a) - = N(a) | + =5 2N(z)
[ 22 (a2 + 23)1/2 ] 22
* T
L 1/2 f N'(g)d%
z(z + 22 .(c,r“l/z

It remains to be shown that the last integral is bounded near z = -if.
This is unot difficult, and we shall omit the proof here.

Let us now develop G(z) in a Laurent series. Because of (3.25), the
series will take the form

G(z) = cz + a, +--;l + -%‘+ ceeeesy |2l 2241 (3.26)
z

The condition (3.23) implies that ¢ and all the L must be real. Now
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1im f£' = 0 that 1lim £f' = 0 and hence that

It follows easily from
y-b-w

y*—ﬂ

lim G'(z) = 0 (3.27)

y-’—“

But then in (3.26), the constant ¢ = 0.
Let us now take a circle C with center z = 0 and radius greater than

2 4+ 1 (see Figure 8), Hence the Laurent series is valid on and outside the

\3
Figure 8 - Region for Laurent Series

circle and the Cauchy theorem yields

f G(g)dg = 21r:la1
[

Since G is, in fact, analytic everywhere outside the flat plate, the inte-
gral along C can be deformed onto the two sides of the plate with little

circles of radius € around thz ends, where G may have square-root singu-

larities according to what we have shown above. Hence

-%+€

L-€
2ria, = f G(+0 + in) idn + f G(-0 + in) 1dn
~f~e+ L-€
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1/2n

+ I G(-1i% + e-ie) ecie id6
-3n/2
an/2

+ " c(it + eel®) o110
-1/2w

1/2

Since G(+if + Eeie) ~ €
vanish as e+0. We have from the definition of G

, the contributions from the small circles

=€ . +0
2ni -'I [, - kY - 1(d_ - k)] idn
e y -0
L-c +0
'J. (¢, - ko] dn
Love 7 -

We have been able to set ¢x = 0 from (3.14). Since the plate must be a

streamline, it follows that ¥(+0,n) = ¥(-0,n) = C and hence that the inte-
gral of ¥ vanishes. Since the left side is purely imaginary and the right
side is real, we can conclude at once that both must be zero. However, we

can also show that the right side is zero by invoking the antisymmetry

property in (3.24). In any case we have shown that a = 0.
Evidently
252 3a3
G'(2) = -3 - - if |z} > 2 +1 (3.28)
z z
3/2

But then the function (z2 + zz)
We have also seen that it is analytic at z = + if and hence also in the

region |z| < £ + 1 except possibly at z = 0, where there is a confluence
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of boundaries with different boundary conditions. We could alluw a singu-

larity at z = 0 in order to represent a loss of energy in bteiking of waves

on the barrier. The theory would not tell us how strong to make the singu- »
4 ? larity but it would serve as a mathematical model for an energy absorber. - ‘ﬁ
- : We shall not do this, however, but instead assume that there is no loss of i

3/2

% . energy. Consequently, (z + l ) G'(z) ié.bounded in the whole cbmplex

! , plane and hence, by the Liouville theorem, must be a constant:

n

Al

L ; G'(z) = < » C real © (3.29) o
El (2 2 + 8 )3/2 7_
;g ' Integrating once, we obtain ;
3 7 G(z) = “r 2 1732 + d, d real (3.30) 3

2% (22 + 1Y 3

Up to now we have avoided specifying what we mean by (z + 2 )1/‘ We ;

§§ : choose the branch that behaves like z at large dlstances from the origin.
1/2

Then on tha right side of the flat plate, (z + 2 ) takes the value

2 _ 2)1/2 2 _ 2,12,

CTRANR TR R
o

¢ and on the left side -(%

T
ot ks s it ettt il 3

There will be no loss of generality if the constant a, in (3.26) is

chosen to be zero for this can be accomplished by adding a suitable con-

kRl

stant to £ itself and has no effect upon the motion. With a,

from (3.26) that G(z) behaves like z"2 as z + o, This behavior can be
2

obtained in (3.30) by setting d = —¢/".

Hence

= (0, we see

PPN TN S P S R NE S X

TR RIS TR

..,'..
b il a

OV

I Oy AT e T A

G(z) = C [-—z——i——w—T— - 1] , ¢ Teal (3.31)
(z" + 2 )

This completes the first step in the reduction method, the finding of G.

{ We must now proceed to find f£.
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Since

;f‘_ g :

1 t G = '+ dkf = ¢ 1KZ % [e“" f(z)]

3 £ : . E

‘! é we may imucdiately integrate the differen. ial equation for f and obtain

! U N 1 1k
f(z) =c e I [ - 11 eI gt ;

&
(Cz + 22)1/2 | —:

In order to be specific about the constant of integration, we shall start
' the integral at z = + i® and integrate along a path that lies on the right
of the flat plate, as shown in Figura 9. However, in order not to lose

T T T

vt loo i
o: b E

§ ;
I
. Figure 9 - Path of Integration for Equation (3.32) 3
a
' generality, we must now add a constant, i.e.,
5 b
3 i
r ;
£ z ¥
4 . \ —i - :
i | £(z) = ¢ e K2 I [ 5177 - 1] ikoqr + 3 1 (3.32)
oo 1o Lg% +19
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In order to determine the constant B, we shalli use condition (3.15).
For this purpose we must calculate .

. -ikz C ) oF ik;
€'(z) = -ikCe I [ 1] e °dg
. o | (22 + 2 )1/2

c| ——2 _ 1] - ikse;ikz
[(22 + 12).172

- -tkne E + ¢t -1kCe_1sz L.
(z° + 27) +i.°°(( +7)

1kl;

Then, if we choose a value of y on the right side of the plate, we obtain

12 -¥n
£'(+ 0 + 1y) = - ikBe*Y + ¢ 5 1y 777 - ikCe™ 1“’ 77 dn
@ -y9 , +iw 1(n )
iy
-kn
- ikce®? | ;"’ 177 140
b N ¢ 4 3
o0
-kn
. - 1kBeX + 1cC X - kce*Y ( ne

! dn
@l - JHilt “© o - 12

kr'a
+ ikl'.‘ekyj 2
(L

dn
2

o, et X VA P 120 L I e e AR i it

i i G AR A

P i Cain e b L e ki 5

i s T s R U A e i




If we write B = Bl + iBz, then

. -kn
2eky - kCeky .[ 2 e 2.1/2 dn =0
L (" =~2%)

Re £'(+0 + iy) = kB

The integral is a known one, namely,

oo =kn
n e
dn = 2 K, (k%)
j; o2 - 12 1

. . *
where Kl is a modified Bessel function in Watson notation. But then
B, =C2 Kl(kl) and we have

2

ikz z ] ikg -ikz
- 1! ™%z + [B, + 109K (k")) e
210 [(Cz + 1512 1 1

£(z) = Ce

R T

(3.34) ‘ z i

T R oy

AT ITEERTL ST
A

where C is real (see (3.31)). This function now satisfies the free-surface

i condition (3.17), the condition on the plate (3.15), the sharp-corner con- | Ji
: dition (3.19), and the conditions at infinity (3.20) and (3.21). We must o k
é now brirg into che picture the separate functions ch and fDS’ the condi- : '
3 > ) : =
g‘ tions (3.16), and the radiation conditicn (3.18). However, befor= we do : E
ﬁ‘ this, it will be useful to have the asymptoijc behavior of £(z) as x + + », ;
; !
-
i |
b . -;
3 I :
) a
£y i
% % ‘f
v

*
See G.N. Watson, "A Treatice on the Theory of Beesel Functions,"
Sacond Edition, Cambridge, at the University Press (1944).
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kl .
E - -
For this purposc we deform the path of integration as shown in E
: Figure 10. 3
i 3 3
|b !
! 4
; | /
z 3
|
i Figure i0 - Deformed Path of Integration i
% !
g o ' . 5
i If we let R + » in the irtegral along the quarter-circle, it is not dif- é
: ficult to show that the contribution frem this part converges to zevo. %
; This then gives us <§
l. !
I . i
: z 2
,[ 7 - 1 ‘*ikcd‘:"j g - 1 e :
o LG* + 29 CH (S !
A . 5
I where the path of integration in the second integral must go under the %
1 : plate. If we now let x -+ + o, it is evident that this integral must con- i
i H
: verge to zero if it is to exist as ar improper integral. which it do:s. z
] Hence g
|
! ~tkx
’ £(z) ~ [B1 + iCZKl(kl)] e as x + ® (3.35) k
| As . x + ~ @, we shall have %
3
1
1
| %
i d
¢ ,:
3 50




£(z) ~ [B) + 102K, (k1)) e~lkz _ o mikz f

-00

R4 ikg
- 1] e"°dg
[(;2 + £2)1/2 ]

where the path of integration is below the plate as shown in Figure 11.

i Ll ik

i

Figure 11 - Path of Integration Below the Plate

We shall complete the path of integration by adding a large semicircle
in the upper half-plane, as shown in Figure 12. Again, it is easy to show

that as R + ©, the contribution from the integral along the semicircle

oAbt etz RS 2ot e, W G vk i L R i

4
B
4
3
4
3
3
El
3

Figure 12 - Completion of Path of Integration

; vanishes. Hence, addiug it to the original integral has not changed its
value. To be moxre precise, what we have shown is that

s ey
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where CR is the semicircle of radius R. Since the integrand is an analytic
function, we may deform the integral right onto the extended fiat plate (see

Figure 13). Just as in the earlier reasoning concerning G, the contributions

TI
Il

Figure 13 - Path of Integration Around Extended Flat Plate

from the little circles at the ends go to zero as their radil go to zero,

and we are left with

Iw[ L 77 - 1] et*ear - I

® + 22 )

)

in ] -kn
-1 e idn
[(22 NNV

-4 % Kkn

in -kn n e
+ - 1] e idn = =2 I dn = 271 (k%)
f . [_(12 _ r,.2)1/2 ] s (22 _ n2)1/2 1

Here again Il is a modified Bessel function of well known characteristics.

Finally, then, we have

£(z) ~ [B, + 1CAK (ki) - 2mLCL (k)] ek o x - w  (3.36)
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We are now ready to invoke the radiation condition. From now on, the ?
function £ and the constants 31 and C will all carry additional indices 3
cor s. If we refer to (3.11) and (3.13), we see thai ;
- -y BA —lkz ]
fc(z) i g © + fDC j
Fy 3
g and
.. BA ik
% fs(') g © + st
# § Consequertly, if we apply (3.35) and (3.36) to f_and f_,
3 E we find
i 4 [, BA -ikz
| § fo(® ~[t#+s + 1cc11<1] e
T a8 x >+
[8A -ikz
7 fs(z) ~ s * B, + 1csnl<1] e
(3.37)
[, BA - -ikz
] ch(z) ~ -1 gt By, *1C K, ZnCczll e
- _ as x > - » 3
BA - -ikz E
st(z) ~ lo + Bls + icczl(1 2ncskll e | i
| i
Then the equation j
_i
: lim (£!' + kf ) =0 !
_ X+ 4 DC DS |
é (see (3.18)) gives %
:
[ - E ﬂ 4 - 4
; ik [1 g + Blc + :I.Cc!.l(l + X% o + Bl. + iC ’2.K1 0 i
! 1

and the equation !
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Jodlen

ki i it

' -
lim (fDC kas) -0

‘-’-.

MR

gives

- A - ] -y [8A - ]
ik [1 S + ‘l.c + 1CC2K1 21rc¢l!.11 k P + ‘1- + 1(:.2.1(1 ZWC.!LII -

PRI o i i o

o el b i

Separating real and imaginary parts, we fiad the fnllowing set of fout

” equations for the unknown constants Blc’ Bln' Cl c? Cl.: :
e
} -B,. + mrc -&KC o =0

“B1s + 2K C +2MI.C =0 . :
. Kl ¢ 1

: B gC =0
5 lc %% §
é Bls + !.chc - o} i
7 %
N The solution of these equations yields :
3 3
i K, (k£) WL, (kL) 3
4] c . - —z-]-'-.-—-i—-i- T c - - -—.-_].'.——z.._.z_ A T
u c g s 2 ol
: z
e T T P Sty
§ c s

g Kl + T Il. Kl + 7 Il

]
3
4
;
1
A
é
1
3
q
i
:
4

Substituting into the asymptotic expresaions (3.37), we find

2, 2
Tl K L ¢
! ch..gé- ~—-2——1—]*2 2+i 7 12 7 e-ihanxw-tw (3.38)
Kl -0"I'II1 Kl +'n11
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2, 2

71 71K
A | 1 - 171 -ikz
‘s "0 |T YT, 552 ‘xZ.. 2|t cerTtrT
1 1 1 1
and
- 2.2 -
¢ _BA ", R 1 h -1ks . .
DC "~ o ?.+“212+ R 2.2 2 | erTT
5 1 1 1
- 2.2 -
K
£ . BA “I; -1 ! el k-
DS ~ o 2 2.2 2 2.2 J
L&L +1r11 Kl -0»1111

The sums f,rc = ch + EIC and f‘l‘s - st + fIS give the two parts of the

transmitted wave when x < 0. The asymptotic expressions are as follcws:

2 —

¢ _BA o L SN, | ks
€~ 0 7. .2 2 7. 2.2
Kl +n Il Kl +w Il _
as x + - «
2 b
¢ _ A B S b | ke
SRl R ) 2, 2, 2
Kl +m Il Kl +m I1 B (3.39)

Let us use the results shown to compute OD as x *+ + o, the velocity

potential of the reflected wave, and 0'1‘ - 01 + QD as x + - »  that of the

transmitted wave:

BA ky 1 - 2.2
’D"o e x12+1f212 ( 'rtlll(1 coskx-l-'nll sin kx] cos ot
1
+ (- 1!2112 cos kx - 17111(1 sin kx] sin ot £3.40)
2, 2
-nI 1

-%.ky -—-2-——1—-2—-—2-000(“-0:)4- 12 zsin(kx-ot) »

‘1 + 7 11 Kl +n Il

as x + + =
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% %5 X T1,K, Klz
| 1% o, BV 12 o (kx + ot) ~ sin (kx + ot)
| B T o K2+ nir,2 K2+ n?r 2
’ 3 1 1 1 1
. a8 X+ -
! il
o (3.41)
: %f The associated expressions fcr the free surface are
% ; ﬂ2112 “lel
3 YD-.A -T——-i—Tco.(kx-ot)+——i—-—T—isin(kx-0t) sy X * 4+ ®
! g Kl +n I1 Kl +7m I1
\ § and (3.42)
i K, ™K,
PoE Y. ~A|——-7—Fco8 (kx+0t) + ——————sin (kx + 3t) |, X+ =@
C T k.2 4 rlr. 2 2 2.2
1 1 ‘lTIl l(l +'n11

kb

It is customary to introduce a reflection coefficlent R = (Ampiitude
of YD)/(Amplitude of Y,) and a transmission coefficient T = (Amplitude of
YT)/’ (Amplitude of YI). Since here (see (3.9)) the amplitude of Y. = A,
we find

L S P

| w1, (kR) K, (k2)
“'(Kz+2121f2 . T'(K2+7121Iz
; 1 YT L YT L)

(3.43)

=

The equation Rz + T2 = 1 is aimply an expression of the conservation of
energy. If we had allowed a singularity at 2 = 0 to represent wave break-
ing, this equation wsuld no longer hold.

We define the phase shifts by comparing the actual reflected wvave with
the completely reflected wave A cos (kx - Ot) and the transmitted wave with
the incident wave A cos (kx + oOt):

e kS . -
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YD-A‘COC (h-Ot-B‘) X T+

é Y.r-A.rcol(kx*ot-ﬂ.r).x-*-- 3
E; We easily find /

w!

nl ! : E
tan =l tan B8, = rl (3.44) E
1 1 ,

Consequently | "

“ E

-1 v f
BptBp=3m (3.45) :
i

The functions Kl and I.k are well tabulated, so that there is no dif-

ficulty in plotting R, T, aund &R as functions of kL. The graphs look
approximately as shown in Figure 14. It is evident t,haai: if A << £, the

refiection is &
P S ,4‘

PSP WP TE S TV 0 TRIES g

T
‘-«

g YOS PORO 5 T e MBI 0108 Mt S R0 AT

g ?
!E; 3
4 4
3 ;
n :
] E
B i
'F - k= 278/A ]
i Figure 14 ~ R, T and B, as Functions of ki
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almost complete vhereas if A >> L, the transaission is almost cosplete,
results that accord with our intuition. However, comparison with experi-
mental ssasurements does not show very good agreement. Part of the reason
for this is probably neglect of the vortices that are formed by the flow
back and forth around the sharp edge at the bottom of the plate. Their
formation is not taken into account in the formulation of the problem.

We have been discussing only the asymptotic beshavior of the solution
vhen x + + ®, However, as soon as we have found glc’ 'h' Cc. and C., we
may substitute into (3.34) and have the complete solution for f.(z) and
£ c(z). With these functions, we can then construct the solutioa ¢ = 01 + OD
for the whole region y < 0. In particular, we can find the pressure on the
two sides of the plate and calculate the force and moment about 0 acting on
the plate. We shall not do this to avoid getting bogged down in treating
just one problem. However, this has been done by Haskind (1948); a brief
discussion of the results is given in Wehausen and Laitone (1960, pp. 53z-
533).
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PART 4: THE METHOD OF GREEN FUNCTIONS

Of the several methods that we are discussing here, the method of
Green functions is certainly the most flexible in application, allowing
treatment of a much wider class of problems than the other methods.
However, even though it has been known for a long time and has given rise
to many mathematical investigations, it did not really become important in
the solution of engineering problems until perhaps the last ten years. The
reason for this is that a "solution" by this method typically involved the
solution of an integral equation. Although one could show in many cases
that a solution to the integral equation existed, an analytic solution was
usually not obtainable and a numerical solution was too difficult. The ad-
vent of high-speed computers has radically changed the sjituation with
respect to numerical solutions, and nowad=zy= this is almost routine.

The above remarks should not be interpreted as meaning that one cannot
obtain an explicit solution by using Green functions. However, in those
situations where one can do this one can, as far as 1 am aware, also solve
the problems by another method. For example, Havelock derived the Michell
integral by using a Green function. However, Michell himself derived it
from Fourier analysis, having first derived a ruﬁiasentation theorem
analogous to (2.22).

We shall approach this method by way of some Green identities, which,
in turn, are directly derivable from the Gauss divergence theorem. Let ¢
and ¥ be any two functiongs defined in a certain thyee-dimensional region V
and having second derivatives there, including ﬁﬁiéboundary S. Then one of
the Green identities states the following: i 

fv [va¢ - ¢4¥] Qv = _[s (v, - ¢9,) ds (4.1)

wheres the normal vector points out of the region V, If in addition both ¢
and |' satisfy the Laplace equation, the left-hand side vanishes and

IS (V6 - ®¥_] dS = O 4.2)
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? ? A particalar solution of the Laplace equation in three dimensions, in
1 3 either P = (x,y,z) or Q = (§,n,%), 1is 'j
: 1/2 y ' 3
el a0+ g-y? + 0 RS j

3 The only exception is at the point P = Q, where the solution is singular.
i Let us take Q as the integracion variable. We must then exclude a small

reglon containing P from the integration. Let this be a spherc'vs of radius

ST T T R e T
e a e s i

bt .
;:j ¢ with surface Se. Then (4.1) takes the form
3 | |
N
3
P Lag-oallav= f[2y - q
oo : ‘ J.. T b - A r] v J [r ¢n ¢ Bn r ds(@ ‘
£y : -V _ ]
b \'} e . S d
E ]
i £
; +§ [—1—¢~¢l—]edﬂ :
£ € Y 2 3
A . S € i
E ¢ !
* i
P . g
£ ) Since the left-hand side vanishes identically and since the integral over !
gf } SE converges to —4 T ¢(P) asg € + 0, we find another identity: g
i (m=-—I ﬁ ——wmades (4.4) ]
F ]
i ]
S . B
T Here we have written Vv instead of n in order to make clear thar the normal ]
ey | 1
ﬁ derivativae is taken in the variables (£,',7). ' :
q If the point P is taken on the surface S at a point where the surface ﬁ
z : . 4
| is smooth, we may show that (4.4) stil] holds if 47w is replaced by 2w. i
H ' b
3 We may now generalize (4.4) further by exploiting (4.2). If we add to ?
3 ' 1/r any harmonic function p (i.e., one satisfying the Laplace equation and g
T having no singularities in V), (4.4) will still hold. We shall choose a §
. g
%} , special kind of function to add to 1/r. Let H{x,y,z,{,n,;) be harmonic in ;
¥ ;
g o each set of variables (x,y,z) and (£,n,Z). We define E
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{ 3 G(p,Q) = = + H(P,Q) (4.5) : S
S 1
;l ‘Q» It then follows from (4.4) and (4.2) that g
(. 3
M 5 1 , ;
i () = 3= J’ [6,4Q)G(P,Q) - $6,1d5(Q) 4.6)
E} § As before, if the point P is taken on S, the 47 is replaced by 2w, E
?f i We have been considering only three-dimensional motion. However, there :
§ 5
5! ¥ are corresponding theorems if the motion is two dimensional. In this case »
G ! & . N
Ef ¢ (4.5) is replaced by . : b
S .
3 G(P,Q) = log T + H(P,Q) .7 E
- 3
.,":g
2 2 1/2 3
vhere P = (x,y), Q@ = (§,n) and r = [(x~§)" + (v-n)"] . Formula (4.6) 3
g, becomes : é
3 c i
.: _1 _ g
o o(®) = 3 f [6,G - ¢6,)ds (4.8)
: | g where C is a contour bounding a two-dimensional region S and ds is arc §
;i g length., If P is on C at a point where C is smooth, then the 27 is replaced ﬁ
gi i Let us now turn to several problems where we can exploit (4.6) or (4.8). o 3
S FORCED HARMONIC MOTION
3 Let us suppose that a body is being furced to undergo pariodic motion ‘ i
i ’ of frequency ¢ and in such a way that there is no average displacement. E
; We shall denote the average position by SO‘ Let the Oy—~axis pass through ,;
: 4
, * (or near) the body and let ZR be a cylinder of radius R, large enough to _ g
E % contain the body. We further denote the portion of the free surface F
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Figurs 15 - Representation of the Problem of Forced Ha;nonic‘nction

If we write

.. e . e e g =Tt oo
el it T i sl Fadiatd i &

t

o(x,y,2z,t) = ¢l(x,y.z) cos Ot + 4;2 sin gt = Re ¢e—i° (4.9) ' -3

vhere ¢ = ¢1 + i¢2, then from (1.13), the free-surface boundary condition

¢y(X.0.z) “- Vv =0, v= ozlg (4.10)

The conditicn on the bottom is

Ve el i ki sl v LA 2

¢ |. =0 (4.11)

etz s

and the condition on SO is

=V (4.12)

i W A Gl et AR & ) Lol e

RV e s e o

Since this is still in terms of ¢ rather than ¢, let us decompose Vn:
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Vn(!.y,z.t) - an cos Ot + vn2 gin Ct
(4.13)

= Re Vn(x.y.z) .-iot

vhere Vn(x.y,a) » an + 1Vn2. Usuaily the facr that the body displacements

are small ic exploited further and we can write

Vn(x.y.z.t) - il(t) n, + 71 n, + il n,
(4.14)
+ &(rxn), + B(Fxm), + ¥(Fw0),

Here (xl(t).yl,zl) describe the translaticn displacements,
(a(t),B,Y) describe the angular displacements of the body, and ris a
vector from the origin to a pcint (x,y,z) on the body surface Sﬂ. 1f

we define

O " Xpr Gy =N 2yt

(4.15)
a~ = fz - Yy, asv- ¥R - ag, ab = ay - x
we may write (4.14) in the form
6 , ,
\'n(x.!lwlgt) - S-'&t(t) l“-k(lo’lnz) ' 14.16)
k=1 ‘

Now ak(t) irself can be written as

o, (t) = ' cos Ot + a." ain Ot *~ Re h~t°: (%.17)
k ™ ~ K Uy .

where oy = ak' + iak". (Whether ak'is a function of t or a complex ampli-
tude should be clear from context.) Next ¢ is decomposed as foliows:

d(x,y,2z,t) = ;E dk(t) ¢1(k2(x,y.z) + dak(c) ¢2(k)(x.y.z) (4.18)
k
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1
. 1
%i 3 The boundary condition (4.12) now gives k
Y : . . . :
LF c"m l Bys 020 | Is (4.19)

if ‘%} If we wish to divide ¢ into sine and cosine components, we may write it as

1 follows:
5 , :
) Z’ W ) e (R e B L, @
Lo ¢ ol ¢, +a. ' 6,7 "]cos ot + ol ot ¢+t ¢, Jein ot L
: k , k ;
]
so that in the uctation of (4.9) ;
; ) Z "o (O, (k) %
o ¢, ofa," 6,7 +at ¢,7] 1
| k (4.20)
(k) n g (k) i
) 2"[’“1( bty )
| ]
i“ o . To justify the decomposition (4.18), we should demonstrate that the é
. problem has a unique solution. It is poesible to do this after we add one 3
é more condition, the radiation condition. In the two examples treated by §
: !
¢ ‘ the Fourier method, we satisfied this by manipulating some undetermined :
L constants. However, when treating che diffraction about a plate by the ]
51 L rejuction method, we formulated the radiation condition directly in terus ;
¥ ; of £, and £ . (see (3.18)). There is an analogous formulation for the §
. . came ® _, (& ®)
- : present case. [f, analogously to (4.9), we write ¢ - ¢ + 1¢2 . ;
: rhen the radiation condition for ¢%) takes the following form° 5
Le &M% (8, (%) 1,‘o“,ck), -0,
Ro 2 (4.21)
g = gko tanh koh ;
1/2

vhere R »~ [xz + :2) « The radiation condition for ¢ = ¢1 + 102 is the
ezme. It is a cousequence of (4.21), which we shall not prove here, that
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i.e., that R1/2|¢(k)| <M <@ if R > R, for some sufficiently large R,.

As far as boundary conditions are concerned, the only difference be-
tween ¢ and the ¢(k) is in the boundary condition on SO' All of them
satisfy (4.10), (4.11), and (4.21). However, ¢(k) satisfies (4.19) vwhereas
¢ satisfies

¢, s, =V _(x,y,2) (4.23)

Much of the following can apply to either one. We shall write out the
(k)
¢

development for ¢. To convert to

nk(x,y,z).

» we need only replace Vn(x,y,z) by

Let us now apply (4.6) to the domain bounded by So, R’ and Z
We find the following:
46 (P) -j' [6,(@ 6(2,Q - $(@ 6, (P,Q)1d5(Q)

0uF UB u):

-I [V,(Q) 6(,Q) - $(Q) 6 (P,Q)]ds
S

LI
h,

le

$(5,0,8) G(B3£,0,0) - ¢ G, | dtd
(4.24)

+| - 4@ ¢ (»,Q) ds

+I [¢RG - ¢GR] Rd6dn

Zg

where we have used (4.23) in the first integral, (4.10) in the second, and
(4.11) in the third.
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We now consider several cases.

Casa 1. Ve begin by writing the last integral of (4.24) as follows:

J‘ &2 [0g - k0] Y % - gl/2 (G ~ 1k, &M%} dean (4.25)
L
R

In this integral, we know from (4.21) and (4.22) that R1/2[¢R - i{K¢] + O

and that RI/ZO remains bounded as R + ®, Let us now suppose that it is

possible in (4.5) to find a function H such that

Gn(P;ﬁoooC) -VvG =0

G,(P,Q) = 0 for Q on B (4.26)

ua RY2(G,(2iE,n,0) - 1k (Gl = 0, R = (£ + 3

R-+eo .
Any consequences we may draw from these properties depend, of course, on
our being able to comstruct such a function.

It is now immediately evident that the integrals over FR
zero. In the last integral, in the form (4.25), we see that now
RllzlcR - 1k°G] + 0 and Rllzc remsins bounded as R + ®, Consequently the
integral over Zn converges to zero as R >~ ®, This leaves us then with only
the integral over So. 1f we now let P be a point of sO instead of a point
in the interior, the 47 is replaced by 27 and we may write the resulting

and BR are

equation in the following form:

1 1
o(P) + 3= j’ $@G,(P,Qds@ = 3= [ v, (@e,Qas@ .21
S

0

This is an integral equation for the determination of ¢$(P) for Peso.
this equation has been solved, then (4.24), which takes the form below,

So

It

gives $(P) for any point inside the fluid:

66

..m.‘......‘...u%,uumz'-.\,m..‘n‘,...,_‘,.y R

i b

reae

(R




D el To Tt e e e S ]

L 3 2R e

T T T T T R

I P —betmbererti g s e —oenve - U OO SS

@) = & J’ [V, (Q)6(2,Q) ~ $(Q)6,,(P,Q)] ds (4.28)
S
0

Once we have found ¢(P), we can also find other quantities of interest,

For example, the free surface is given by

-iot

Y(x,z,t) = - %-Qt(x,o,z,t) --% Re 1i9(x,0,z)e (4.29)

The force acting on the body (i.e., the hydrodynamic part) is given by

-

S0

pnds= - pf o, n ds

S0

6
-3 -0 f[&k(t)q»l‘k’ + 08,096,173 as
k=1

or, in components

Fi = - &ka- ¢1(k)n1ds - &k op! ¢2(k) n, ds
So So (4.30)

=G My -8 M

where U . and Aik are often respectively called "added masses" and "damping
coefficients." 1In this case they are functions of the frequency as well as
the body geometry. There are some advantages for further developments in

replacing n,; in (4.30) by ¢1(k)

n ® according to (4.50). However, we shall

nct explore this further.

Under what conditions can one find a Green function that satisfies
(4.26)? It is possible to construct such a function for either infinite or
constant finite depth by applying either the Fourier method or the

reduction method. The functions can be found in several places, e.g., in
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Wehsusen and Laitone (1960), for both two and thres dimensions. e shall

later consider the case when the bottom is not of constant depth.
The deselopment of a computational method based upon integral
equations has been carried out for two-diweansional motioun by Werner Frank

(1967) of NSROC and almost simultaneously by Lebrston (1967).

P

Cace II. Llet us try the very simple choice A
1
G(P,Q) = Py (4.31) i
In this case the integrals over FR and BR wi.l} not vanigh. Let us 3
examine the integral over ZR as glven in (4.25). We know from (4.21) that A
‘ R’u ZNR - 1ko¢] can be made as small as we wish by taking R large enmough.
Can we assert that Rl/ %6 - RU zlr remaing boundad? Let us write ‘ ‘ :
R, = 6+ Y2 re @ B2 C 14.32) k

and let a be the angle between the vectors (x,z) and (£,[). Then

re= (8% + R12 - 2R, cos a+ (y - m231/2  (4.33)

B s N PPN

f | Evidently
: . - - §
' g2 /2 ' (4.34) g
r R\:  2» 24 172 :
Y Y r-n 4
{1+(R)— R coua+( 7 )] 3
If P is taken near Q, it is evident that the denominator becomes small and f
bence that Rllz/ ¥ beconmes large. Properly we should examine the 1:;:;31'51 7
i
o Lom 3
1-n1/2f dnj ae & i
~h o i
>~3
|
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where K(p) is the complete elliptic integral. We can undoubtadly do

better than this. In any case, it is not enough, for K(p) + ® as p + 1.

g i We shall approach the treatmert of the integral over ER somevhat differently. i
i E In discussing the Fourier method, we found solutions of the form 1
1 (2.17). 1If in the solution for x, we had introduced polar coordinates :
;'5 éf 3
F] g 3
% x=Rcos 6 , z=Rsin © (4.35)

y we should have found the following soluticns: ;
‘ w Jn(kOR) cos nb k.
! X, = X (4.36) ;

Yn(koR) sin nb

i
Li

where n is an integer and Jn and Yn are Bessel functions in the Watson no-

b s tinkb el v

tation. If we consider the region exterior to some bounded body, we find

Lic SRS ASMIE

that the only contributions for x, are exponentially decreasing in R and

S gl el

that the part of a solution representing outgoing waves has the following

form:

¢ ~ Z a, coshlk (y +b)] cos(n® + 6 ) [J (koR) + 1Y ] (4.37)

n=0

———— T TR

) where, as usual, Jn + iY“ = Ht(nl)’ The combination is usually called

4 the Hankel function of the first kind. Its asymptotic expansion for large

kOR is well knuwn, and we may write the asymptotic expression for ¢ as

§ follows:
3

i
!
3
4
i

R S Nt -t ity N -l o el
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- 2 1/2
Z a cooh(ko(y + h)] coo(nd + § ) ( ‘) x
0

n=0
' (4.38)
2 1

; L) o= I 1
st 258

A atraighnforvard cowpuiation yieldx

=1 ~5/2
O ~Fp bt ikge + o (kyR) } (4.39)
We now substitute this cxpteaaion for ¢ into the integral over Il in

its original fora in (4.24), neglecting the tera of 0{(k°R) 3,2} After
some reordering of (4.24), we can write it in the following form:

. . ,
4n¢(P) +I $(Q)G, (P,Q)dS +j $(Q) [Gn(P,Q'.‘ -% G] ds
So | L | -
(4.40)
of soneosof v [ ) 2] o
B, £y

- j v, (QG(P,Q)ds

So

1f we row let P approach any boundary, we have the same equation with Arn
veplaced by 2w. This is tlen an integral equation for the determinstion
of ¢{P) for P on SderJB‘JXl, Once it has been determined, the equation
above determines 9 at any interior point. Ue should keep in mind that in
deriving EBquation (4.40), an approximation has been nide In «valuating the

integral ove: il.
This wmethod has beoy: used for numerical calculations in both two and

three dimensions by R.W.~C. feung (1973; see alko Bail and Yeung, 1974). In
70
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comgaring this procedure with the earlier one in which we used a Greem
function satisfying (4.26), the following points should be kept in mind:

1. The Green function satisfying (4.26) is much more complicated than
(4.31). However. this is offset by the fact that ¢ {s sulved only for P on
So. In the Yeung method one finds ¢ for P on sdJFﬂJnﬂJzn’ which means, of

Al

<A MRS

course, a much larger matrix in the discrete version of the integral
equaiion.

2. Although in the Yeung method we have required a flat bottom for R largc
enough, it does not need to be flat in the region near the body. Further-
more, in the two~dimensional version, the flat region can have different ]
depths on the two sides. This did not seem to be possible with the more 3

kol ik g b Lt

complicared Green function satisfying (4.24). We now turn our attention

TR T TR ARy

to this question.

s i

Case III. We now suppose that our Green function satisfies (4.26) except
that cv-o for Q on B is replaced by 1

TR
ne debd e, L
i il ks

5 :‘ Gn(P;E. - h,Z) =0 (4.41)

We have mentioned earlier that it is possible to construct such a Green i
function. This Green function will now be applied to the situation indi-
cated schematically in Figure 15. However, we shall suppose that the part
of the botton that is not at depth h is limited to a finite stretch that we
i shal) denote by lo (see Figure 16).

| | F

b A, o, ¢ 3t sl b 4 et bt

r———ﬁ-———

Figure 16 - Limitation on the Par:t of the Bottom Not at Depth h i

7 /)

%




:
E

| AT P 1 e

1f we now use this Green function in (4.24) and take the limit R +» =,
we oltain the following equation:

416 (P) = I [V, (QG(P,Q) - $(0)G, ] dS

s
0 (4.42)

+[ - oo @0 e
B

I1f we now let P be a point of either S0 or BO’ we obtain the following in-
tegral equation:
0@ + 35 [ @O, ds = 3 [ V@CEQ a5 (443
SOUB0 S0
This is almost exactly the same as the integral equation (4.26) except that
the integral on the left-hand side is now cver SOLJBO instead of just SO'
Now by comparing Cases 1, II, and III when the bottom is uneven near
the body, we may make the following observation. Case I is not feasible
for we do not know how to construct the Green function. Both Cases II and
I11 are feasible. Case II has a simple Green function, but we must find
$(P) over an extended boundary. Case III has a more complicated Green
function, but we must solve for ¢(P) over a more restricted boundary.
Some comparisons of computer times for the case of a completelv flat
bottom are given in & paper by Bai and Yeung (1974). 1In the case con-
sidared there, a two-dimensional one, about twice as much time was required

for tne Yeung method (Case II) as for the Frank method (Case I).

DIFFRACTION PROBLEMS AND THE HASKIND
RELATIONS

The following remarks are a sort of appendix to Case II1 discussed
above, With the sam: geometry considered there, let us suppuse that the
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body 18 fixed but that there is a known incident wave with velocity po-
tential ¢I. If ¢ is tha velocity potential for the total fluid motion,
then the diffracted wave is defined us usual by

¢ = 01 + QD (4.44)

The diffraction potential must, ol course, satisfy the free-surface con-
dition and radiation conditions. In addition, it must satisfy the boundary
condition

¢Dn - - oIn on both S0 and B, (4.45)
The force acting upon the body as a result of the presence of the fluid
motion is given by

Fi ] I pnidS - - pI (QIt + ODt)nidS
S S
0 0 (4.46)

= Re ‘— 10p I (¢, + ¢ )n,ds e""‘}

So

The Haskind relations as usually presented for a horizontal bottom or in-
finite depth, allow solution of the diffraction problem to be avoided if
the forced-motion problem has already been solved. Here we shall show that
this is also true if the bottom is uneven.

Instead of the function ¢ defined by the integral equation (4.43), wve
shall use rhe function ¢§k) defined by the same equation with Vv(Q)
replaced by “k(Q)' Then ¢{k) satisfies the boundary condition (4.19) and

in addition
¢1(k) =0onB (4.47)

We suppose that this function has been found.
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| -l o 4 Censider now the volume bounded by SdJFﬁJBR}ER We apply the E
by 1
E{ ! . Green identity (4.2) to ¢, and ¢( 9, %
1 o= 0,0, ~ g 009] as i
AT o o S UF UB UL 1
door - 0 RTRR (4.48)

[ ‘ . S L. o (

. L e o S - k) (k)

oo o . [0p®1n " = 9pg?y 198

;H , SOUBOUZR

AR ]
ﬁL ; for both ¢D and ¢1( ) equal zero on the flat part of B (recall that ;
b .

r; ¢In = 0 there). &lso, ¢ (k = 0 on B0 Since both ¢D and ¢(k) satisfy

ﬁf the radiation condition, the integral over ZR tends to zero as R =+ =,

Hence we may write the last equation in the following form:

o MDA 5 L kb am e

i,
Kli
g

¢

; _ () 4e o (k)

5 J' 0 dS f o0, Fas f oy 6 €ds 3

, s S UB i

070 (4.49) :

- - (k) 5

- Oraby 48 %

SOUBo ;

Then Equation (4.46) may be rewritten as: ;

‘. F, = Rel- 10p [ f 00,0 = ¢ _o®yas - I o ¢(k)ds] eiOt}

3 5o By (4.50)
E, Fi is now expressed completely in terms of known functions. The ex-

pressicn (4.50) differs from the usual one only in the presence of the

integral over B0 This poses no problem in principle for in solving (4.43),

i i s sk MLt e L

we have found ¢( ) on both S and B.
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DIFFRACTION ABOUT ISLANDS, HARBOR
OSCILLATION

As a sort of diversion, I should like to consider a slightly different

type of Green-function problem, one that is two dimensional in the mathe-

e T i ST
TARET

matical sense. We begin by considering the physical situation shown in y
Figure 17:

Figure 17 - Representation of the Physical Problem of
Diffraction about Islands g

% The bottom is assumed to be horizontal and the island to have vertical ;
walls. As a consequence of this simplified geometry, the problem may be
treated as two dimensional. The incoming wave will have the velocity K
potential 1

amadote e Los st

A ;
; p ¢I(P,t) 5 cosh koh cosh ko(z + h) sin [ko(x cos B + y sin B) - ot] é
1 (4.51)
! - Re ¢ ()", o - gk, tanh kh :
3 0 é
T
1 i and the surface profile :
: YI(x,y,t) = A cos[ko(x cos B + y sin B) - ot] (4.52) f
g :

Note that here we have taken z vertical (see Figure 18). ;
) z
; |

Figure 18 - References Axes for Diffrdction about Islands

y
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The diffraction potential QD(P,t) = Re ¢D(P) e_iot will satisfy the free~
surface condition, the radiation condition, the bottom condition, and

) - - ¢m| (4.53)

D .

c

From the form of QD’ we can see that it is possible to precipitate z out of

the problem by recognizing that ¢D must have the form

~ cosh k,(z + h)
0p(%,¥,2) = d(x,y) cosg h (4.54)

Then ¢D automatically satisfies the free-surface and bottom conditions.
The Laplace equation becomes

~ ~ 9 ~ cosh ko(z + h)

A3¢D - e + ¢Dyy + k0 ¢D] cosh koh

Dxx

or (4.55)

A 2/\
A2¢D + ko ¢D =0

This is known as the Helmholtz equation. Henceforth we shall drop the

circumflexes ~.
As a preliminary step, we go back to one of the Green identities in

two dimensions.

f(uAv ~ vAuldS = I (uvn - vun)ds

S c

If both u and v satisfy the Laplace equation, the left-hand side obviously
vanishes. However, if both u and v satisfy the Helmholtz equation, the
left-hand side also vanishes. Hence

J' (uvn - vun)ds =0
C

s o, STttt A s bt ot Y s
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Now suppose that it is possible t. find a solution of Helmholtz

equation of the formA
v = log =+ F(x,yiE,n) -
1/2
2 2
r=[x-5"+(-n"]

where P = {x,y) is a fixed point and Q = (£,n) is any other point in S or
on C (see Figure 19). Of course, v has a singulavity as (£,n) + (x,y) so

(3]

Figure 19 - Region S for Helmholtz Equation

that, just as in the case of the Laplace equation, we must exclude a small

circle CE of radius € about P in order to apply the equation above

I + J' [uv. - vu_}dS = 0O
n n
C C€

The same limiting procedure that we used earlier to derive (4.8) now

leads to

(4.56)

interior

u(P) = —;;I (vu, - uv_)dS(Q) , PeS
c

il e b
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We return now to the island problem. Consider the region bounded by 1
C and a large circle of radius R,I; (see Figure 20). We hope that we can 3
.construct a function §
~ E
// * N "
\ Cc A E
L}
| \ / ;
E‘ \\ ’/ k.
Figure 20 - Region Bounded by C and ZR ' * :
\ ;
t% G(P,Q) = log ;-+ F 3
$ (4.57) j
- log &
log r + Fl + 1F2 i
E such that G satisfies both the Helmholtz equation and the radiation %
E condition ?
£ oo VT (6, = 1KG) = 0 (4.58) |
H |
?f We shall write, according to the formula we have just derived, ;
b -l - 1 -
1 %p®) = 27 I [¢p\G = 96,18 + o7 I [opy= = #pG,1dS
b c ) :
3 ]
% Since both ¢D and G satisfy the radiation condition, we can show as we ;
3 did earlier that lim = 0., Hence i
; Ree Jp ﬁ
E: *
3 3
B _ 1 ]
o5 (8) = 5= fwm,«z)c(v.cz) ~ 6,6, 1ds j
l
i
; :
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or, using the boundary condition on C,

1 1
o (®) + 3= J 0 (UG, (P, Q)ds = - 3= J' 61, (@GR, QS (4.59)
C C

If the point P is taken on the boundary C, then, as before, the 27 is
replaced by w:

1 1
op® +3 [ op@c, @08 = - 2 [ o @ (4.60)
C C

This is an integral equation for ¢D and the remaining problem, aside from
numerical computation, is to determine whether the required function G can
be constructed.

We shall simply give the function rather than actually construct it.
It is possible to show that

G(e,Q) = 1 T [3,(yr) + ¥ (egr)] = 15 uél) (kyr) (4.61)
The integral equation for ¢D is then
6, (@) + 3 J 6 @By Pas = - 1 J' 0, B (e ryas (4.62)
C C

Once ¢D has been found on the boundary C, then we can use the more general
equaticn (4.59) to find ¢D(P) for P outside C:
N § €D 1,
op® == ¢ [ 1oy@u gr) + o @B degonas w6
C
The above results are all well known in the theory of diffraction of

acoustic and electromagnetic waves upon infinitely long cylinders.

Let us now conslder a slightly different geometrical configuration.

Figure 21 is supposed to represent a coastline with a harbor and an incident

wave. We again suppose the bottom to be at depth h and all coastlines to
be vertical cliffs.
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Figure 21 - Incident Wave on a Coastline with Harbor

We shall follow a procedure of J.-J. Lee (1971) in dealing with this

At the mouth of the harbor, place a rigid fictitious wall M and

problem.
First we find the solution in the region

solve the problem in two pe+ts.
outside the harbor with the wall M in place, i.e.,
(4.64)

- - ¢Iﬂ'

¢ |
Dn'gum SUM

In a simplified model of the shore line, it might be a straight line (see
Figure 22). In this case, the diffracted wave ¢D would simply be the

)&(ﬂ

Figure 22 ~ Straight-Line Coast

plane wave reflected from the shore line. Noute that in this case, the

diffracted wave does not satisfy the same radiation condition used earlier.
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However, with the configuration shown in Figure 23, the earlisr radiation

condition applies. ¢I + ¢D cannot really give the solution outaide the

Figure 23 - Circular Coast

harbor for the effect of the harbor has been neglected. The incident wave
¢I will certainly excite some sort of motion inside the harbor and, in
turn, this motion will excite some motion outside the harbor that will
radiate away from the mouth. Hence the motion in the exterior will be

represented by
Pext " 01t %t %

where ¢R satisfies the radiation condition (4.58). For a point P in the

exterior, we then know that

% = ,[ (og g = dgligg ) 145 (4.65)
MUS

If we let P be on the boundary and remember that ¢Rn| = (), we may write

S
this as follows:

i Myg = 1 (1)
¢ (P) + 3 f ¢cHgy 45 = 3 j e Hp S (4.66)
MUS M

We shall denote the velocity potential inside the harbnr by ¢H. By
the Green theorem, we have for any point P inside the harbor
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-1 Q) _ (1) -

0@ =3 [ oy ® - o0, {P1es (4.67)
MUH

wvhere we have used the Green function that satisfies the radiation con-

dition because ve want to match ¢, with ¢ . Since OHn'H = 0, part cf
the integral vanishes. Letting P be on the boundary, we find

0y (P) +-§- j‘ ¢“Ho\sl)ds -1 I %u“o(l)“s (4.68)

MUH M

Our matching conditions are the following:

¢ -¢I+¢D+¢R'¢HOI\M

ext
(4.69)

Sext n ™ %Rn " = % ™ M

(since the positive direction of n is opposite for ¢R and ¢H)
Before applying these in the above equation, it will be convenient to

introduce some new notation. Let us define the following operations:
=y

WA, _ 1 )
H, Ay - fwao ds (4.70)
A

(LA, . 1 )
Hou AEE v H ot as
A
Then 'he integral equations (4.66) and (4.58) can be written as follows:

1+ HSDOMUS)y g DMy
4.71)

a + “o\(,lmu“)‘u - Ho(l)“%n
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Let us denote the values of ¢Rn and OHn on M by
O‘m(l’) - - ¢Rn(P) = F(P), PeM (4.72)
Ther {or a point P of M, we may invert the above equations and write

(4.73)

Since ¢“ - ¢I + ¢D + ¢R on M, we have

(I + Ho(l)MUH

=1, (LM - (LMUS, -1, (1)M
v ) H0 F -(1+H0V ) Ho F+¢I+¢D

~

or

-1
6 D). G (1)MUH,-1 )Mus, -1
Ho F= [(I+ HOV ) T+ (I + “w ) 7] (¢I + ¢D) (4.74)

This gives Ho(l)M F in terms of ¢I + ¢D. We could proceed to find F, but
this is not necessary, for having found H(]')M
Equations (4.70) to find ¢R or ¢H on MUS or MUH, respectively. Once we
know ¢R and ¢H on these boundaries, we can find them at any point of their
respective domains. For example, to find ¢H(P) for any P inside the

harbor, we use

F, we can now use

1 (1)MUH 1, ()M
¢H(P) 3 HOv ¢H + 2 H0 F (4.75)
The operator notatioc.: '.as been introduced for the following reason.
If we are treating the exact problem, then these are integral operators
acting on continuous functions. However, if we discretize the problem by

looking for ¢H’ say, only at discrete points Pl’ Pz, « «» « on the boundary,
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we then replace the integral operator by a matrix operator and the con-
tinuous function by a vector. Nevertheless, the equations in operator

form remain the same. Thus use of the operator notation introduces a
certain economy in thought.

The method has been successfully tried by Lee (1971) and in a wore
elaborate version by Lee and Raichlen (1972).

AN INITIAL-VALUE PROBLEM FOR A WAVEMAKER

The last example that we shall consider differs from the preceding
ones in two regpects: we use a time~dependent Green function and we are
able to give an explicit solution. The problem under consideration is
nothing but the initial-value problem for a wavemaker in a wall. It is
thus closely related to the problem considered on page 26.

We suppose that some section of the wall x = 0 is flexible and moves
in some predetermined way

x = F(y,z,t) , (sz)eso (4.76)

We may take the bottom to be given by

y = - H(x,2) 4.77)

but eventually we take the fluid infinitely deep in order to give an ex-

plicit solution. The appropriate boundary and initial conditions for the
problem are:

F.(y,z.t) , (y,2)e8,
Qx(ooY-zot) -

0 ’ (Ysz)tso
0n(x, - H(x,2),2z,t) = 0 , h = H(x,z) (4.78)
lin ¢ =0, hewo
y~—= ¥
PYY

é

) ki itk

o a AL, bt
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% ¢, (X,0,2,8) + 8°y =0 ;
i ®(x,y,2,0) = ¢ (x,0,2,0) = 0 (4.78) 3
1 (Cont'd) 1
i lel, |®.], |ve|, and |Ve | are bounded ]
g i Since Equation (4.6) did not involve time, it may still be applied to é

this problem. However, we wish to make an efficient choice of the Creen
function. We shall suppose that it is possible to construct a function
G = 1/r + H(P,Q,t) satisfying the following conditions: 3

R G (P;0,n,Z;t) = 0
: ij(P;E. - H(§,Z),g5t) = 0 if h = H(x,z)

{11m G, =0, i h=w A

N+

e o st el

G, (B3€,0,Z5t) + 86, = 0 (4.79)

[G(P;Q;t) = G(P;Q; - t)

g or G,_(P;Q;0) = 0

g \ t

; G(P;E,,O,C;O) =0 :

E |

g G oOR %), GR O(R ), Gy O(R ) ;

7 1
{f ; We shall now apply (4.6) to the fluid bounded by a large vertical §
iﬁ é circular cylinder ZR of radius r, and the parts of the wall W, the free ?
: g, surface F, and the bottom B included inside ZR. However, we shall apply i

(4.6) to 0: rather than ¢. Furthermore, we shall take the time variable in
b ¢ to be T and in G to be t - T. This does not, of course, invalidate the
use of (4.6). We then have the following:

[T o

bﬂ@t(P;T) - I {- @tg(OoﬂoC;T)G(P;O,n,c;t -T) + °t6€ldndc
w

ST

+ j' l¢tn(€.0:c;t)G(P:£.0.C;t -1) - °t6nld€dc
F

3]
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where we have already used the boundary conditions on B and the asymptotic
condition for large R to eliminate the integrals over B and ER. We may
also exploit the boundary conditions on W and F to write this equation

as follows:

Wbt(l';'t) - f Ftt(n.c;r)G(P;O.n.c;t - T)dndg
S

0

1 )G(RIE.0. s ~
2 J’[- Py e (E:0, T TIG(RIE, 0,858 = ©) + 9.G, 1dEdz
F

- - J‘ Ftt(T)G(t - T)dndg
So

(4.80)
2 [0,,(6(E = ) + & ()G, (¢ ~ T)]dEdL

'
09 -
oy

Ftt\“:)G(t ~ T)dndg

[]
)
o

0

+-§-; I (¢, (DG(t - 1) - % ¢, (1)6, (t - T)]dEdg
F

We now integrate this equation from 0 to t:

t
4nd(P;t) - 4md(P;0) = - J‘ dt f F . (D6(t - 1)dndg
0o s,
+ J‘ [0, (£)6(0) - 2 @, (£)C, (0)1dkaz (4.81)
F

) 1
- I [on(O)c(t) - Ot(O)Gt(t)]dEdC
F
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If we now make use of the initial conditions for G and of Equations (1.9)

and (1.10), we may write this equation as follows:

4nd(P;t) = 4nd(P;0) - I dt I Ftt(t)c(t - T)dndg

0 s
0 (4.82)

- [ oo + @00 @060
F

In fact, we have assumed that ¢(P;0) = 0 and ¢r(£.0.c;0) = 0 as initial
conditions for ¢. Hence (4.82) becomes
t

4md(P,t) = - J dt I Ftt(n.c.T)G(P;o,n,c;t - 1)dndg (4.83)

0 S0

This sclves the problem formally, but we are left with the problem of
finding a Green function satisfying (4.79). This function can be con-
structed for either H(x,z) = h = const or h = «, We give it here only for
h = ©, We give first the result without the condition GE(P;O,n.C;t) = 0:

o0
Gy(P,Qst) = % - % + 2 I dk X I, (kR [1 - cos(VgkE)]

1
0 (4.84)

[

L +% -2 f dk Xt Jo(R) cos (Vgkt)
0

where 1/2

relx-52+@-n2+@-0?

1/2
g =[x - 02+ g +mi+ -0

1/2
R=[(x-82+(-0?

In order to construct a Green function that also satisfies GE(P;O.n.C;t) =
0, vwe use the method of images. ULefine
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..‘.:
1/2 | B
nelx+Di e g -m -0 R
1/2
e lx+ 02+ g+ mi+ -0l ]
2 9, 1/2 &
R, = [x+8)°+ (z- ) 4
E .; Then é
: : 1,1 .1 .1
i > G(P;Q;t) = =+ =— 4+ — + — Loy
| z T T T2 T3 -
%‘ o (4.85) -3
-2 f ak 2O (5 GR) + 3 (kR,)] cos [VEKT] 3
% ! 0 E ;”
% : E 3
E If we substitute this into (4.83), we obtain % A
1 4
4mo(P;t) = - 2 I dnd;[ E
s, Y+ -mie-o?
] t
1 : : .3
+ :” F . (M,Z5t)dT g
2 2 2 -
R R " (4.86) .

o t
. 1/2 .
+ 4 _[ dndg j ai *TM g (kix? + (2 - DA J' F, (N,5;t) B
5o 0 0 i
| k:
cos vgk(t - 1)dT ? Z

If we make the special choice (2.38),

F(Y9zot) = F(Y.Z) sin Ot

St b ez i, B i it

the integrals with respect to T can be evaluated. An interesting problem
18 then to find the asymptotic form of the solution as t + =, ' This should

ey
R

SRR 1Y




and does agree with the form obtained by the Fourier-integral wmethod. The

asymptotic form may be written as follows:

0, (B3t) = 5= j dndt F(n,2) ———
A Vi + (p -2+ (z - 02

0 : (4.87)

1 e
+ sin Ot + 2k, sin Ot _dk_ ek(y+ﬂ)

7 2 7 0 k=ky ™
Vil + g+l + -0 0
: ko (y4n)
JO(kR) - ano cos Ot e Jo(koR)

The use of time-dependent Green functions in the manner shown above
is apparently first due to Volterra (1934). It has been further exéloited
by Finkelstein (1957), Wehausen (1967), and W.-C. Lin (1966). Many people
prefer to work entirely wich frequency by initially taking Fourier trans-

forms (or Laplace transforms).
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PART 5: THE METHOD OF MULTIPOLES

The method of multipoles can be used in either two or three dimensions
and consists essentially in adding together singularities of higher and
higher order with intensities to be determined by the boundary conditions.
In the case discussed here, the singularitiee are chosen to satisfy the
free-surface and radiation conditions. The intensities are then selected to
satisfy the boundary condition on an oscillating body.

The method occurs in various guises, but in the type of problem we con~-
sider, it was apparently first used by Ursell (1949), who treated the
heaving motion of a circular cylinder. The analogous problem for a heaving
sphere was later considered by Havelock (1955). Others who have used it are
Tasal (1959), Porter (1960), and C.M. Lee (1968), but the list is not
exhaustive.

The present approach to the method differs somewhat from the usual one,
but as will be shown later, the results are the same. The present approach
seems to have the advantage of showing from the beginning that the sum of
singularities usually employed really 1is gufficient to solve the problem.
Once again the method is illustrated by the problem of the forced harmonic
motion of a body in a free surface., The treatment will be two dimensional

and will have much in common with that of diffraction from a vertical plate.

FORCED HARMONIC MOTION
Figure 24 shows schematically the physical situation. We shall

)

Figure 24 - 9scillating Body on the Free Surface

suppose that there is a complex velocity potential of the form

F(z,t) = fccos at + fasin ot (5.1)
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From page 39 we may conclude immediately that both fc and fa satisfy

Im{f"'(x+10) + ikof} = 0, ko-czlg (5.2)
and
lim [f' 2tk .f] =0 (5.3)
x + o © 0°s

We further suppose that

lim f' =0 (5.4)
y-h-m
and that
i j<B if |z| >a, y<0O (5.5)

where |z| = a contains the cylinder. Let the surface of the cylinder be
described by z(8) = x(s) + iy(s), where s is arc length measured from some

convenient point. Then

£'(z(s)) 2"'(s) ~ (¢x-i¢y)(x'+iy') (5.6)

= 0k’ F oy - 10,y Hx')

i¢

n

= ¢

tang

Hence the final boundary condition is
Im £'(z(a)) 2'(s) = -Vn (5.7)

We now proceed almost exactly as in the case of the diffraction about
a vertical plate, i.e., by the reduction method. Define

g(z) = £'+ik f (5.8)

0

Then, repeating the steps taken in that problem except for consideratiomns

concerning the singularity at z = =i, we find
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a, a,
g(z)-cz+ao+—z-+-z—2+ cevy |z|z_a (5.9)
where ¢ and a_ are real. We may also conclude from (5.4), just as in the
diffraction problem, that ¢ = 0. Furthermore, a, may be absorbed inic the
stream function without loss of generality, so that we finally have

x

g(z) = Z a_: R |z] > a (5.10)
n=) z
One of the important properties of power series representing analytic
functions is that they converge absolutely up to the nearest singulari:y.
Since the function g must be analytic everywhere outside the body, we know
that (5.10) must converge at least up to a circle just containing the body,
as shown in an example given in Figure 25. If the body is a semicircle,

([ Yy .

1
BODY /\ssnles CONVERGENT
S— OUTSIDE THIS CIRCLE

Figure 25 -~ Region of Convergence

then the series (5.10) will converge right up to the body. Moreover, since
there is no singular behavior of g on the circle representing the body, the
radius of convergence must be smaller than the radius of the body itself.
It will also be true that the radius of converyence of (5.10) for a non-
circular body with smooth boundary will be smaller than the circle just em-
bracing the body. However, this is no guzrantee that it will hold right up
to the boundary of the body. Thus, at the moment, we seem to be con-
strained to treat only a body of circular section with center in the free
surface. For the time being we shall do this and later consider what to

do 1f the cylindrical section is not circular.
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We now integrate (5.10) and obtain

L
where b0 - bo

S -ik.x
f(z)-z ae oJ' en dz + bye

+ ib.'', but the a are real.

g 1ik.Z -
G 1k0:

n=1 " AR 4

0

taken from z ~ +» and liea below the body (nee Figure 26).

F’

(5.11)

The path of integration is

We define

Tigure 26 - Path of Integration for (5.11)

—ikoz 2 eikoc
f (z) =e J- — 4z
o n

o &

An casy integration by parts shows that

or

1 [
f =+—}=~+nf
n 1k0 [zn n+%]

1
ikofn - nfn+1 = ;;;' n'l,,2,3, s

Furthermore, it is easy tc establiah that
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3
' £ 4+t (5.14)
in (I)-—ikon :5 .

3
1 9
i so that
i S Y nl . (a)
E fadl © "1 £ " D T h (5.15)
é! 3
/ Let us now consider only the infinite-sum part of fc or fs:
| |
Zaf - af) “m [lkf—Zf]
R | n=1
E ? r2&2 ] 1
| +L-——-+a 1k £ 3£}+
§ , iko 3 ikO 0°3 4
: 3 2a2

a a a
2 1 3 2 1
11 1k0 22 [}ko (ik 2 83

where b1 is real, bq is imaginary and b3, b4, ... are complex. The last

be related if the free-surface condition is to be satisfied. This series

may be arranged as follows:

%4

g o

geries is, however, misleading, for it does not make evident that the b mst

i a5
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o
S af ' [1 2 1] 23 3_1
pa AN ™, oo S s D] o | S o ]
n=1 171 iko .2 iko ‘3 iko .3 iko a‘
a a
4 2 1 4 1
+ |+ 3.2-—-————— e e B (5.17)
[mo (1&0)3] [8" ¥ =5]

Now each coefficient after the first is purely imaginary, and it is possible
to show that each term individually satifies the free-surface condition
and radiation contition. Define

k
1 0 1l
mn(z) = :;xr-+ i T (5.18)

Then it is easy to confirm that
]
Im{mn (x+10) ~ 1komn} = 0

Hence, bnmh(z), bn real, also satisfies this.

We assert that we may write

- -}
Zanfn = b, f, + Z bm (2), by = a),by,b,, +.. real (5.19)
n=2

of course, the manipulations leading to (5.17) do not prove this, but once
the combination defining n has been recognized, it is not difficult to
prove (5.19). For example, we may do this by using the relacionship

n
£ = - 2 [mn + (n+l) fn+2]
0

Let us now consider
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We shall make the change of variables

kk
kg(t-8) = kz or k=kySE, - k0° z (5.20)

Formally, this gives immecdiately

0 -iksz ® g~ikz
6| = dk"f =N

) 0 A 0

where the path of integration is still to be determined. Let us take our

path in the Z-plane as shown in Figure 27 (two cases are shown).

{-PLANE

Figure 27 - Paths of Integration in I-Plane
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The transformed paths in the k-plane will then appear as shown in Figure 28.
The nev paths are a rotation and atretching of the original paths.
;
3 k-PLANF
] ¢ ' 8, 8 ko2 Koy
| i —
I A
3
.
(.
o =
I
T -
H ;
Ef § Figure 28 - Transformed Paths in the k-Plane
; E Let us now ~xamine the arcs ZR joining the path to = with the i
B positive x-axis (see Figure 29). i
. E
3
i

Figure 29 - Arcs ER Joining the Path to =
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We find easily that the contradbution of ZR goes to zero as % - =, Hence
ve may deform the path to one slong the x-axis except for dodging around

kg (see Figure 30).

Figure 30 - Path along the x-Axis

If we choose the path around ko as a semicircle of radius € and then take
the limit as € ~ 0, we will obtain a Cauchy principal-value integral plus

a half residue:

ad
‘-1kz -1koz
fl(z) = -5 ka.T dk - Tie (5.21)
0

Now consider the radiation condition (5.3). Tn coxder to satisfy this,
we must find the asymptotic behavior of £ as x +~ t », If we use the series
(5.19) as part of the representation, it is obvious rhat we may discard the
contribution of the terms in m as x + * ®», Hence we need tc examine the

asymptotic behavior only of

—1koz

alfl(z) + b_.e (5.22)

Y

It is evident that

-1k .2z

f(z)-—boe 0 as X ~+® (5.23)

1f we write (5.22) in the form
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=1ik.a .*ko‘ -ikol ,
£(z) ~~-AJ:! - AT + boe & X > ~w

o

Y
Ly

i

As in the case dincusse¢d on page 50, where the path in Figure 11 has been
replaced Ly that in Figure 12, we may replace Lhe ‘ntegral from - to =

I L T T T e

oy A

by the closed path sho'm in Figure 31.

T I 1

T Bt . I 1 13

- \ T\‘ /ca 4

Figure 31 - Equivalent Path of Integration for f(z) j

But then we know from the Cauchy Integral theorem that

A oA ik et

> ik
eoc
dg = 211

o

Hence

-ik 2z

£(e) ~ (-2mia) + b)) e 0" a8 x+ - (5.24)

1
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We now apply the vadiation condition (5.3) to fc and fs, adding appropriate

subscripts to the cocfficients:

L 1 1t 1
f8 -~ ‘iko(bco + ich ) + ko(b80 + ib80 Y= 0 as x>+ ®

'
fc + ko

fc - kofs -vl-iko(-2ﬂiac1 + ch + ibco )

T
-ko(—Zﬂiasl + bso + ibso )=0 as x> -

These equations yield

1) e L] Ty

s0 -ch = -"acl’ by = bsO = Ta

0 (5.25)

b sl

Let us now go tack to (5.21) and substitute this form for fl:

e 0 0
£ =2, |: = — dk - Tie +mla, + 1a e
0

r ;" -ikz -ik z -1k z

0

e-ikz -ikoz -ikoz
fs =a, |- dk - mie + 'rr(-ac1 + iasl)e

These simpiify to the following forms:
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o o0
+ =ikz -ik.z
0
£ u—ad} W—dk+“ale +Zbcnmn
0 0 n=2
(5.26)
-ikz —ik
e
aslfkk k-ma, e *'zb my
0 n=2

Before returning to the problem of satisfying the boundary condition
on the bndy, we make one mcre digression, namely, to explain why this is
known as che method of multipoles. Suppose that we wish to construct a
function behaving like a source of strength Q cos Ot and vortex of intensity

I' cos ot at the point ¢ in the lower half-plane, i.e., like

T+iQ _ |
7l log (2-c) cos ot !

and also satisfying the free~surtare and radiation conditions and

vanishing as y + ~ », This problem can be solved (e.g., by the reduction

methed) and we find ' |

G(z,c) [Etlg log (z-¢) + I-1g log (z=c) :

2wi 27wl i
|
-ik(z-¢) :
-1 ———0‘ f dk] cos Ot
*o (5.27)
-1k0(z-3)
- 1(I-1Q)e sin ot

= Gc cos Ot + Gs sin ot

The method uf multipoles, as applied to the problem we have been con-
sidering, would consist in assuming that the solution can be expressed as
a sum of G and its derivatives evaluated at ¢ = 0, {.e., that

| e
fc - aocc(z,o) + alcc (z,0) + a2Gc (z50) + .oy 8 real

(5.28)
fB - aOGs(z,O)
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Since there is no circulaéion in the problem we are considering, we may set
I'=0, Furthermore, there is no loss in generality in setting Q=1 since each
sumnand is multiplied by a real éoefficient to be determined later. If we
also set c=0, (5.27) then takes the following form:

1 e—ikz
6 (2,0) = = 7§ dk
-ikoz
G (2,0) = e : 5.29)

Now if we examine the terms of (5.26) before the summation, we see that
by setting a81=0, bsnfo, we have exactly the same series as (5.28).
Although (5.26) may appear to be more general because of the presence of

the terms with a1s and bsn’ this is only an apparent generality, an

appropriate shiftlof the time axis can achieve asl.bsn-o' Hence the method
we have developed is equivalent to the method of multipoles.

Next we must satisfy thé boundar§ conditiéﬁf(5.7) by proper choice of
the coefficients a.1s 859 bcn’ and bsu‘ For the case to which we are pre-
sently restricting ourselves, that of the semisubmerged circular cylinder,
this condition may be given a slightly simpler form. In order to exploit

symmetry, we introduce the angle Y shown in Figure 32.

[ gy
=17

Figure 32 - Definition of Angle y
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As in (4.13), we shall write
Vn(x,y,t) =V, cos ot + V. 8in ot {5.30)
Then (5.7) takes the form

¢cn - -¢cx sin y + ¢cv cos Y = Vnc(Y)

e vy~ [l Ty iy e de i

Ogn = ~bgy BIR Y + ¥ cos ¥ = V__(V) (5.31)

TR T e g e

It will be sufficient to discuss one of these although, as we shall see,

E i the two must be solved together. From the solution (5.26) we may compute

il f" : ke -1k f \

E : fc a 4 iac1 ; E:ir—-kdx - iﬂaslkoe + bcnmn (5.32)

vy 0 0 n=2

% § From (5.18) :
y ' 1 1 |
1 L (z) = -(n+l) ;ﬁ:f - 1k0 ;;;E-a -(n+1)mn+1(z) (5.33)

Into (5.32) and (5.33), we substitute z = —:I.rej'.Y and separate real and |

imaginary parts. This somewhat tedious computation yields (perhaps) the f %
following: ' :
s =krcos 5

- e sin(krsin y) 3

Sex ™ 21 . k-k, kdk {

0 3

4

1

-k.rcos Yy E

- ﬂaslkoe sin(korsin ) %

i

o ; 3

+ b, L gyP [ccs(z 2y - e +1) :

S Teatp 2082 PTEIY = Zpar SnSPTIY

r 3

2q+2  ,_.\q+l 0 3

+ 5;; bc,2q+l r2q+3 (1) sin(2q+3)y + GIT) cos (2q+2)Y )
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f e ¥ECO8 ¥ 08 (krsin ) Kdk
0

' ¢cyif “8ci k-ko
-k.rcosy
+ Ta ;e cos(korsiny)

k.r
p+l *o”
+ Z b, ,2p 2p+2 (~-1) [sin(Zp-l-Z)Y + 3pFL cos(2p+1)y]

p~1
3 k.r
2g+2  ,_.\q+l 0" ]
+ 3;; bc,2q+1 r2q+3 (-1) cos(2q+3)Yy - 3472 sin(2q+2)y

It seems reasonable now to skip over some details and to observe that

(5.31) takes the following form:

14 () +a_M () + :E% b N (Y) -V, (Y)
na
(5.35)

[- -]

a8, L (V) +a M () + :E: b N (Y) =V _(Y)
n=2

There are evidcntly an infinite number of unknown coefficients, but salso,
of course, an infinite number of values of Y where these equations must be
satisfied., We shall not discuss the methods that have been used to solve
approximately these equations by truncation. Unfortunately, the various
functions have no orthogonality properties.

We must now consider the question of what to do i the cross section
of the body is not a semicircle, for ae we have seen earlier (see page 97),
we have no reason to believe that the circle of convergence of the function
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g(z) in (5.10) will be inside the body boundary (plus its reflectiom).
What we do in this case is to make a preliminary uapping of the exterior
of the body plus its reflection onto the exterior of a circle. However,
the mapping chosen imposes a restraint upon the body: it must intersect
the free surface perpendicularly. _

Let § be the plane of the circle and z the physical plane containing
the body in question (see Figure 33).

{-PLANE 2-PLANE

Figure 33 - - and z-Planes

Then it is known that we can map the exterior of the circle onto the
exterior of the body and the £-axis into the x-axis by a mapping of the form

o0
C
z=10r 4+ Z —E . cm real (5.36)
m=1 7

Let us suppose that £(z) is one of fc or fs' Then
f(z) = £(2(3)) = F(3) (5.37)

defines an analytic function in the Z-plane that can be considered as a
velocity potential there. What happens to the free-surface condition?
Since F'(g) = £'(z) 2'(g), we find

£ (z) + k£ (2) = E.—(@)l + Lk F(D)
z (g

Hence condition (5.2) becomes
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.
F (§H0) 4 4x F(EH.O)} .0

m |, (£+10) 0
or, since
2 (E+10) ~ 1 - 2, mcm&;"““1
m=1
is real,
' 3 —r-1] ..
I {F (E+10) + ik, [1 - El uC £ J F(t,+10)} - 0 (5.38)

This is the boun@ary condition that must be satisfied on the real axis out-
side the circle.
We shall now proceed similarly to the earlier case. Define

(-

N ) z mCm
G(g) = F (§) + iko [1 - - Cm"'l] F(g) (5.39)

This function can be extended by reflection into the whole complex plane
and furthermore can be shown by easy arguments to be bounded outside some

circle |Z| = a containing the mapping circle. As before, we find

G(g) = Z = % real, |z| > a (5.40)
n=l

But then, since G(Z) must be analytic right up to the boundary of the
wmapping circle, the Laurent series (5.40) must converge right up to and

including this circle.
We are now left with the problem of integrating the differential

equation
t mC g a
F (0) + ik [1- -—‘“—]F(;)-Z—“—
0 zcm-i-l ey R (5.41)
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The integral cam be found in textbooks on differential equations (e.g.,
Kapke, "Differentialgleichungen: Losungsmethoden und Losungen," p. 16)

and way be written as followa:

14
.-m -a " n-m
F(g) = exp{-ikO[C-O-ZCmc 1} ‘B + % ‘nf 4 ex,){ikoll:ﬂ:t.dt ]}dc}
” (5.49)
where the path of integration is below the mapping circle and B is complex.
Let us define

(5 - ]
7,0 = expl-tig(eeiet™} [ ¢ emplikg ezt e (5.43)

Then (5.42) may be written in the form

o0

F(5) = B exp{-iky[g+ic "1} + ‘; a_ F_(2) (5.44)

If we integrate Fn once by parts for n > 2, we find

-n+l
-+ 1 expi- -
Fo= 2=+ o3 etk loric t 71} x

I mC
e [1-5 ] 2 -
j 1icg [1 2 m-l-l] -1 exp {1k [c+2c c 7 1}dL
A ‘

1k
1 1 .1 0y

~ ol o1 ol %ofa-1 T 51 &~ "Cufinm
4 m=1

Let us replace n by nutl and rearrange the result as follows:

- -}
n 1 1
Fn(c) - Ix Fn+1 - E uC F . Tk o (5.45)
0 ‘o=l 0¢c

n-1,2.3. LR R
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I1f possible, we should like to do something like wa did on pages
99-100, i.e., to replace the awkward integrals rz.rs. +ss by polynoumials,
some.hing analogous to the mh(:) of {5.18). Equation (5.45) is the analog i
of (5.13). However, to msnipulats terms as we did in (5.16) and (5.17)
would seem to require a remarkable insight, Let us write out (5.45) for
n=23, .... for several terms:

It seems evident that Fn must be expressible as . series starting with C-u:

2 1 1
Fz had iko FB - Cl FA ~ 202 Fs - 303 F6 ~eses = iko 2

] 4 .
i 3 11 3
3 F, = =——F, -C, F_ - ZC F, mcvee = 7o S0e ;
i 37Tk, 4T T %0 T Tky 3 ]
i (5.46) 3
| f 4 1 1 3
I & F - s F C F ~asee W e m—— 3
B 4 1ko 5 176 iko C4 1
5 11 ;
) Fo == F, “vee, & 7 = E
% . 5 iko 6 iko CS ]
1

® o (n)

1 By :
i 2 K (5.47) &

n Cn k=0 ¢

1f ve substitute this expression into the defining equation for Fn:
*

Bt Mt s ridnen e bl 154 o s . D 2 A

@K
' mC
m 1
Fa “ko[l“zm]%";

m=] 4

it is not difficult to establish the following:

R LY S

B(n)__L__ . @ L = B(n)--‘-‘—"ll-n(“)+cn(“)

0 ko2 ' T2 1ko 1 170

o kaa

and in general that
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q-1
(n) () )
B+l ﬁ% LI ZB (@%) e By @l (5.48)
r=

Although we could proceed with this exprescion for Fn’ it would require
careful attention to detail in separating real and imaginary parte in the
coefficients Bq(“), Q2.

In order to avoid this difficulty, it has been customary to proceed
somevhat differently. Inatead of the sum I 'nFn in (5.44), we shall try
to replace it by ancther sum I dnun,dn real, where the Mh will be definad
below. We shall again suppose that Hn has the form

® (n)

1 Z k
u-——-—
n e Ck (5.49)

but we shall begin by impoaing only the condition

wC
Im ll( "+ ik [1 - Z -—ﬂ-] M }- 0 whenn =20 (5.50)
n OL n

m=l ¢m+1

0f course, Fn satisfies this condition also, so that we must expect to
impose sume alditional conditions. Substituting (5.49) into (5.50), we
cbtain the following equation (we temporarily drop the superscript u):

-1 ;

® k-1 i

~k=-1

+ 1§1 [1k0bk+1 - ()b, - 1k D (ker) C.k_rbr] 4 } ;
()

(5.51)

] L ]
If we now set bk-bk +ibk and 7=£+10, the coefficients of each power of

£ yield the following equatiomns:
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] n e
b - s}
1l ko 0
; ‘o nkl " .
B2 Tk, M
i
%3 Tk, by +¢ (5.52)
1 t n+3 |
E % b, ko b3 "+ 2c, + C b,
o ’
v ' " k-1
E k+l + Z (ke r)Ck -rr
Ho =0
ﬁ ! Evideatly, for each value of k, bk is not determined, but bk is ;
S v ' " |

determined as a linear function of the preceding b, , ..., b , and b .
e 0 k-2 k-1

We can choose the bk as we please. We shall do this in such a way as to
]
make b, =0 for k>2. Thie can be accomplished by choosing

a-

b "%

0 " " ¢ ) (k-l)ck—l
’bl -0, bz --k0n+2| sey bk ‘-ko n& R ERRY

(5.53)

st oo St Lo Sl i

eabairp a4l

\j
The only nonzero vezl part is b1 =1, The series (5.49) then has the
following form:

ik
0 1 1
M) = —2 -1, - 1k, Z
n n cn cn+1 k-l n+k+1 Cn+k+1 (5.54)

The Hn may be considered as the analogs of the L of (5.19).
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We have not yet shown that nzl anrn can bs teplaced by a1r1+ n;z dn"n

with dn real. With some furth~r ianipulation, we can establish the follow-
ing relation between Fn and Hn:

Ky’ ~

2(1, 1\ . 2(L, 1
Mn-“_n_l'n"'[ko (H+n+2) nl] l"n-O-Z*'sz (n+n+3)rn+3

] r~3
2 Y 1,1 K(r-k-2)
+ ko ?-7. {(r_l) (n + n+r)- Z n+k+l ckct-k-z} (5.55)
k=1

Since the cnefficients on the right-hand side are all real, it is evident
o o
that a sum Z dnun with dn real is equivalent to a sum Z anl-‘n with a a

n=2 n=2
real. Since the coefficients an have not yet been determined, it is not

necessary to know the relation between the {an} and the {dn}’ Instead, we
shall determine the dn directly.
Equation (5.44) for F(Z) now takes the form

F(g) = B exp{-ik [z+IC l;'m]} + a,F, + Z d M, d real
0 m 1’1 am2 00 n (5.56)

The radiation condition and the boundary cond‘.ion on the body remain to be
considered. Foxr this purpose there may be some gain in replacing Fl(l;) by
fl(:(t;)) vhere fl is defined by (5.12) with nu=1l. This is not, of course,
the same function as Fl(l:), but it can be used in (5.56), as we shall see

below:

T z
ik x -m
J‘ e 0 i - J‘ exp ik, [Z+IC T "] [1 —Z nC, ]dc
d 2 ° r +2:Cm§.n Cn-i-l
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4 R )
j‘ exp 1k0( c+£c.c-‘] 12 5:1

dg
3 c
- DI~
[ 4
¢ exp 1k0[c+£cnc'“] r < e
- j 1+ Z —a]dc
& L n=} g

[

wvhere L is real, Evidently the difference between fl(s(C)) and Fl(c) will

w
be a sua z o which, in turn, can be replaced by a sum of M .

n=2
Hence ve uay replace (5.53) by

F(5) = B expl-1k [THC T 1} + af) (2(0)) +

<
+ L dnH“, dn real

n=2

where these d o 3T different in general from those of (5.56).
With this change, we may take over completely our earlier relations
on pagd 104 that were derived to satisfy the radiation condition, for the

un play no role in this condition.

(5.57) 3
E

b sl

In order to satisfy the condition (5.7) on the body in the physical
plane, we must estublish a relation between this condition and one in the ;

-plune.
no longer arc length.

Let it be p.

Let us first rawrite (5.7) for the case where the parameter is

Then (5.7) becomes

(5.58)

Let p now be & parameter in the {-plane describing the mapping circle:

g(p).

Then the body in the physical plane is described by
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a(p) = 2(%(p))

and

2 () =2 € T (P
Since

') @ =F®
we find

£ ap)) 2 (@) = £ (®) 2 (D) T =F @ TP

condition (5.59) then beccmes the following In the {-plane:

F

- -V (5.59)
s ) T )|

Im a

To develop the analogs of (5.35) would ivolve us in more details
than seem appropriate to carry through in thcse lectures. We teruinate
the discussion of this method with the remack that it is possible to
develop this into a computational technique for bodies intersecting the
free surface perpendicularly, as has been chown by Tasai (1959) and Porter
(1960) .

113

bl




PO TR~ YT
—— —

i b il

oI XTI AN T G T SRR ST T

STRGIRR Y DR e

+ SR T

e

BIBLIOGRAPHY

Bai, K.J. and Yeung, R.W.. "Numerical Solutions to Free-Surface
Flow Problems," Proc. 10th Symp. Naval Hydrodynamics, Cambridge, Mass.,
1974, pp. 609-647.

Biesel, F. and . Suquet, '"Les appareils z&nf ateurs de houle en
1liboratoire (Laboratory Wave-Generating Apparatus)," Houille Blanche,
Vol. 6, pp. 147-165, 475-496, 723 737 (1951); Vol. 7, pp. 779-801 (1952);
and Vol. 9 (supplement to No. 5, p. 27) (1954%;.

Evans D.V., "Diffraction of Water Waves by a Submerged Vertical Plate,"
J. Fluid Mech., Vol. 40, pp. 433~451 (1970).

Evans, L[.V. and C.A.N. Morris, "The Effect of a Fixed Vertical Barrier
on Obiquely Incilent Surface Waves in Deep Water," J. Inst. Matn. Applica-
tions, Vol. 9, pp. 198-204 (1972).

Finkelstein, A.B., "Tte Initial Value Problem ior Translent Water
Waves," Comm. Pure Appl. Mzth., Vol. 10, pp. 511-522 (1957).

Garrett, C.J.R., "On Cross-Waves,"” J. Fluid Mech., Vol. 41,
pp. 837-849 (1970).

Haskind, ¥.D., "The Pressure of Waves on a Barrier," Inzhen. Sb.,
Vol. 4, No. 2, pp. 14:~-160 (1943).

Haskind, M.D., " On Wave Motions of a Heavy Fluid," Akad. Nauk SSSR.
Prikl. Mat. Mekh., Vol. 18, pp. 15-26 (1954).

Haskind, M.D., "Radiation and Diffraction of Surface Waves by a Flat
Piate Floating Vertically," Akad. Nauk SSSR. Prikl. Mat. Mekh., Vol. 23,
Pp. 546-=-356 (1959).

Havelock, T.H., "Forced Surface-Waves on Water," Phil., Mag. Ser. 7,
Vol. 3, pp. 569-576 (19z9) = Coll, Papers, pp. 304-311,

Havelock, T.H., "Waves due to a Floating Sphere Making Periodic
Hegving Oscillations," Proc. Roy. Soc. London. Ser. A, Vol. 231, pp. 1-7
(1955) = Coll. Papers, pp. 602-608.

Kravtchenko, J., "Remarques sur le calcul des amplitudes de la houle
linkaire engendrée par un batteur," Proc. 5th Conf. Coastal Engrg.,
Grenoble, pp. 50=6t (1954).

114

ST U T L W PI OTr PPty




Lee, C.M., "The Second-Order Theory of Heaving Cylinders in a Free
Surface," J. Ship Res., Vol. 12, pp. 313-327 (1968).

Lee, Jiin-Jen, "Wave~Induced Oscillations in Harbours of Arbitrary
Geometry," J. Fluid Mech., Vol. 45, sp. 375=-394 (1971;.

Lee, Jiin-Jen and Fredric Raichlen, "Oscillations in Harbors with
Connected Basins," Proc. ASCE., J. Waterways, Harbors, Coastal Eng. Div.,
Vol. 98, pp. 311-332 (1972).

Lin, Wen=Chin, "An Initial-Value Problem for Motion of a Ship Moving
with Constant Mean Velocity in an Arbitrary Seaway," Dissertation, Univ.
Calif., Berkeley (1966).

4 ' Mahony, J.J., "Cross-Waves. Part i, Theory," J. Fluid Mech., Vol. 55,
¢ pp. 229-244 (1972).

Perter, W.R., "Pressure Distributins, Added Mass, Damping Coefficients

for Cylinders Oscillating in a Free Surface," Dissertation, Univ. Calif.,
Berkeley (.960).

Tasai, F., "Damping Force and Added Mass of Ships Heaving &nd !
Pitching," Rep. Res., Inst. Appl. Mech. Kyushu Univ., Vol. 7, No. 26, pp.
131-.52 (1959).

Uruell, F., "The Effect of a Fixed Vertical Barrier on Svrface Wuves
in Deep Water,” Proc. Cambridge Philos. Soc., Vol. 43, pp. 374-382 (1947).

Ursell, F., "On Waves due to the Rolling of a Ship," Quart. J. Mech.
Applu Math., Vol. 1, PP 246-252 (19’}8).

Ursell, F., "On the Heaving Motion of a Circular Cylinder on Surface
of a Fluid," Quart. J. Moch. Appl., Math. Vol 2, pp. 325-353 (1949).

Volterra, Vito., "Sur la théorie des ondes liquides et la méthode
de Green," J. Math., Pures Appl. Ser. 9, Vol. 13, pp. 1-18 (1934).

R L s e il G Y i ST s S b MR N i

Wehuusen, J.V., "Initial-Value Problem for Motion in an Undulating
Sea of a Body with Fixed Equilibrium Position," J. Eng. Math., Vol. 1,

il 3 fanl e bl et

o e b -
Bt - T

115

BT R s el i e, e ke 5N b ettt o d R i ™ & ‘ »
e IR Lol wi PR - T a{ms . ER L, et e R AR V70 TRMERIOU -7 1 o g




‘Mechanics, Vol. 13, pp. 93-245, Academic Press, N.Y. (1973).

Wehausen, J.V,, and E.V. Laitone, "Surface Waves," Encyclopedis of
Physics, Vol. 9, pp. 446-778, Springer-Verlag, Berlin (1960).

Yeung, R:W., “A Singularity-Distribution Method for Free-Surface
Flow Problems with an Oscillating Body," Dissertation, Univ. Qaiif..
Berkeley (1973). ' : : ' '

i e s

e S R U 3 A

116

Wehausen, J.V., "The Wave Resistance of Ships," Advances in Applied

T dit : 1 o 5 T - -
g3 G "..flfl. AU i R S g Yl TR 4 P 108 OB S A IS SEMELE (S0 LI VL T A PR R SRR

i b R £ AT Lt e e s S A S i <

-y . O St g N e T A N R T g B e e O T
s o LAl S ] BT Tg S P T Sl Rt s s e SRSy e 5 A TR F il St aleh

ek




| B INITIAL DISTRIBUTION |
E' ﬁj Copies Copiles . . ;
ﬂ 4 I US Army Waterways 1 NAVSHIPYD NORVA/Lid
4 F Experiment Station .
i Reb Conter Lib 1 NAVSHIPYD PEARL/L1>
| . CHONR 1 NAVSHIPYD PHILA/Lib
A : R.D. Cocper, Code 438 1 NAVSHIPYD PTSMH/Lib
ﬁ J 1 ONR BOSTON 10 NAVSEC
1 1 SEC 6034B
B /
ioE 1~ ONR CHICAGO 2 SEC 6110
HoE 1 ONR PASADENA 1 SEC 6114D
: 1 SEC 6114H
o 1 USNA/P. Van Mater 1 SEC 6120
0ot 1 NAVPGSCOL 1 SEC 6i36
Eop 1 SEC 61408
Ej L 1 NROTC & NAVADMINU 1 SEC 6144G
El 1 NAVWARCOL 1 SEC 6660.03/D.L. Blount
b 1 NRL/Lib AFFDL/FDDS/J. Clsen
1 4  NAVSEA 2 AFFDL/FYS |
1 2 SEA 09G32 1 Dale Cooley
; 1 SEA 03316 1 S.J. Pollock
1 1 SEA 0358 12 bDC
1 NAVFACENGCOM ) COGARD)
1 NAVOCEANO /L1b 1 COM (E), STA 5-2 ?
] 1 Div of Merchant Marine
1 NADC Safety
1 e 1 LC/SCI & TECH DIV -,
1 NOsC 1 MARAD/Adv Ship Prog Off
1 NSWC, White Oak/Lib 1 NASA AMES RS CEN !
1 NSWC, Dahlgren/Lib R.T. Medan, M5 221-2
1 NUSC NPT 3 NASA LANGLEY RES CFN i
“ 1
1 Brooks !
1 NAVSHIPYD BREM/Lib 1 E.C. Yates, Jr., Ms 340 \
1 NAVSHIPYD CHASN/Lib 1 NASA Sci & Tech Info Facility {
1 NAVSHIPYD MARE/Lib 1 NSF/Eng Div ’

i | ikl

117

Univ of Bridgeport
Prof E. Uram
Mech Eng Dept




Copies - ' : Copies
N | 4  Univ of California, Berkeloy 1
: College of Eng, NA Dept 4
1 Lib

1 J.R, Paulling
1 J.V. Wehausen
1 #.A. Schade

3 Calif Inst of Tech
1 A.J. Acosta
1 T.Y. Wu
1 M.S. Pleswret

1 Colorado State Univ
M, Albertson
Dept of Civ Eng

P

[#))

e Rt et et
LR

1 Univ of Connecicut
V. Scottron 3
Hyd Res Lab

1 Cornell Univ/W.R. Sears
Grad School of Aero Eng

1 Florida Atlantic Univ
Ocean Eng Lib

1 Harvard Univ/Dept of Math
G. Birkhoff

1 Univ of Hawail 3
Dr. Bretschneider

1 Univ of Illinois
College of Eng
J.M. Robertson 1
Theoretical & Applied Mech

3 State Univ of Iowa
Iowa Inst of Hyd Res
1 L. Landweber
1 J. Kennedy
1 Hunter Rouse

e s TR A CL-a O LS

R AT

e AU R BT N T

-

I e SRS TR

1 Kansas State Univ
Engineering Exp Station
D.A. Nesmith

1 Lehigh Univ/Fritz Lab Lib

1 Long Island Uaiv
Grad Dept of Marine Sci
David Price 1

118

Delaware Univ/Math Dept

Univ of Marylai«
) Eng Lib
1 P.F, Cunniff
1 C.L, Sayre
1 F. Buckley

Mass Inst of Technol
Dept of Ocean Eng

1 P. Mandel

1 J.R. Kerwin

1 N. Neumann

1 P. Leehey

1 M. Abkowitz

1 A.T. Ippen/Hydro Lab

Univ of Mich/Dept NAME
1 T.F. Ogilvie
1 H. Benford
1 R.B. Couch

Univ of Minn/St. Anthony Falls
1 C.S. Song
1 J.M. Killen
. F. Schiebe
1 J.M. Wetzel

City College, Wave Hill
! W.J. Pierson, Jr.
1 A.S. Peters
1 J.J. Stoker

Univ of Not—e Dame
A. F. St Ti \ﬂdhageﬂ

Penn State Univ
Ordnance Res iab

Southwest Res Inst
! H.N. Abramson
1 G.E. Transleben, Jr.
1 Applied Mech Review

Stanford Univ/Dept of Civ Eng
1 R.L. Street
1 B. Perry
1 D2yt of Aero and Astro/
J. Ashley

Stanford Res Ianst/Lib

e e < PR oA o B A b T

e e et e 7

v b - < ot €




ey g N s o e

e ;EMW‘%WYW‘WWMH:ammzmwzz:vwq-—«-

Cupiles Copies

3 Stevens Inst of Tech 2
Davidson Lab
1 J.P. Breslin
1 S. Tsalonas
1 Lib

1 Utah State Univ/Col of Eng
Roland W. Jeppson 1

2 Univ of Virginia/Aero Eng Dept
1 J.K. Haviland
1 Young Yoo

2 Webdb Institute
s 1 E.V. Lewis 1
E 1 L.W. Ward

1 Worcester Poly Inst/Alden
Res Lab

% 1 Woods Hole, Ocean Eng Dept 4
: 1 SNAME

1 Aerojet-General
W.C. B@ckWi th

1 Bethlehem Steel Sparrows
A.D. Haff, Tech Mgr 1

1 Bolt, Beranek & Newman, MA

11 Boeing Company/Aerospace Group 1
1 R.R. Barber

H. French 2
R. Hatte

R. Hubard
F.B. Watson
W.S. Rowe
T.G.B., Marvin
C.T. Ray
Commercial Airplane Group 1
1 Paul ¥, Rubbert
1 Gary R, Saaris

1 CALSPAN, INC.
Applied Mech Dept

1 Flow Research, Inc.
Frank Dvorak

1 Eastern Res Group 1

Pt b s et b Pt et

119

General Dynamics Corp
1 Convair Aerospace Div
A.M. Cunningham, Jr.
MS 2851
1 Electric Boat Div
V.T. Boatwright, Jr,

Gibbs & Cox, Inc.
Tech Info Control Section

Grumman Aircraft Eng Corp
W.P., Carl, Mgr.
Grumman Marine

S.F. Hoerner

Hydronautics, Inc.
1 P. Eisenberg
1 M.P, Tulin

Lockheed Aircraft Corp
Lockheed Missiles & Space
1 R,L. Waid
1 R, Lacy
1 Rotert Yerkins
1 Ray Kramer

Marquadt Corp/F. Lane
Geueral Applied Sci Labs

Martin Marietta Corp/Rias
Peter F. Jordan

McDonnell-Douglas Corp
Douglas Aircaft Company
1 Lib
1 Joseph P. Giesing

Newport News Shipbuilding/
Lib

Nielsen, NA Rockwell

North American Rockwell
Los Angeles Div J.R.
Tulinius/Dept 056-015

Northrop Corp/Aircraft Div
1 J.T. Gallagher
1 J.R. Stevens

Oceanics, Inc.
Paul Kaplan

recdralt. o et

It i L

LRPRERY NN



me-nv-~=ﬁ e

PR {

P

Copies
Sperry Sys Mgnt 3 1556
Robert Taggart, Inc. ]i ::l;: ::::h
Tracor 1 D. Coder
1 156
CENTER DISTRIBUTION 1 1568
Code 2 157% M. Ochi
11 1 C. Lee
115 1 1576 |
1 1151 1 16
1 1152 1 167 l
1 13 1 169  R.J. Engler E
3 1 15 L 17 ?
1 1502 3
1 1504 118 ?
5 ) 1505 2 1843 ;
2 1 1506 1 19
1 1507 1 1966 Y. Liu ; ;
L 1 1% 1 273 é ;
1 b 1 27132 { :
1 152 Wen Lin
1 1528 30 5214.1 Repor.ts Disiribution 1
1 1532 1 522.1 Library (C)
1 154 1 522.2 Library (A) :
1 1541 i
1 1542 i ?
1 1544 %
1 1548 g
53 1552 3

1 J. M’.‘.Clrthy l {
1 K.P. Kerney

50 T.J. L&ngln
1 H.T., Vang




g e

TR e e e

A

T

P

DTNSRDC ISSUES THREE TYPES OF REPORTS
DTNSRDC NMEPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT

TECHNICAL VALUE. THXY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARD-

LESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT,

DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A
PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR S:3-
NIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

TECHNICAL MEMORANDA, AN iNFORMAL SERIES, CONTAIN TECHNICAL DOCUMEN-
TATION OF LIMITED USE AND INVEREST, THEY ARE PRIMARILY WORKING PAPERS INTENDED

FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE
AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTHIBUTION OUTSDE

DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-
BY-CASE BASIS.
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